Abstract:
A method of inspecting a display panel, which is capable of substantially minimizing a color difference of a display panel according to a viewing angle, includes: setting a reference area having a center point on a chromaticity diagram; emitting a white light on the display panel; measuring first color coordinates of a target point of the display panel at a first viewing angle; measuring second color coordinates of the target point at a second viewing angle; calculating a difference value between the first color coordinates and the second color coordinates; converting the difference value into target polar coordinates with the center point as an origin; and determining whether the target polar coordinates are within the reference area.
Abstract:
A method of inspecting a display panel, which is capable of substantially minimizing a color difference of a display panel according to a viewing angle, includes: setting a reference area having a center point on a chromaticity diagram; emitting a white light on the display panel; measuring first color coordinates of a target point of the display panel at a first viewing angle; measuring second color coordinates of the target point at a second viewing angle; calculating a difference value between the first color coordinates and the second color coordinates; converting the difference value into target polar coordinates with the center point as an origin; and determining whether the target polar coordinates are within the reference area.
Abstract:
An organic light emitting display panel includes a base substrate; a light emitting device comprising a first electrode, a light emitting layer on the first electrode, and a second electrode on the light emitting layer; a base layer providing a base surface on which the first electrode is located; a supporting layer protruding from the base surface; a sub-electrode spaced from the first electrode, electrically connected to the second electrode, and located on the supporting layer; and a pixel definition layer on the base substrate so as to expose the first electrode and the sub-electrode.
Abstract:
An organic light-emitting display panel includes a first display region including a plurality of first sub-pixels and a second display region including a plurality of second sub-pixels. Each of the sub-pixels includes a pixel circuit having a driving transistor to output driving current to an output node based on a data signal, a storage capacitor to store a voltage difference between the driving voltage and the gate voltage of the driving transistor, a switching transistor to transfer the data signal to the driving transistor, and a light-emitter connected to emit light based on the driving current. An overlap area of the gate electrode of the driving transistor and an anode electrode of the light-emitter in the first sub-pixel is smaller than an overlap area of the gate electrode of the driving transistor and an anode electrode of the light-emitter in the second sub-pixel.