Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.
Abstract:
Disclosed is an organic light emitting diode display including: a pixel unit including an organic light emitting diode for displaying an image; and a periphery surrounding the pixel unit. The periphery includes a gate common voltage line formed on the substrate and receiving a common voltage from an external circuit, an interlayer insulating layer covering the gate common voltage line and including a common voltage contact hole for exposing a part of the gate common voltage line, a data common voltage line formed on the interlayer insulating layer and contacting the gate common voltage line through the common voltage contact hole, and a plurality of protrusions provided in the common voltage contact hole and formed on the substrate.
Abstract:
An organic light emitting display device and a method for manufacturing the organic light emitting display device, which includes a light emitting region and a non-light emitting region, and having an organic light emitting element including first and second electrodes disposed in the light emitting region and an organic emission layer formed between the two electrodes, a driving voltage supply line disposed in the non-light emitting region and providing a driving voltage to the first and second electrodes, and a contact part disposed in the non-light emitting region and disposed to be in contact with the first electrode to supply the driving voltage provided from the driving voltage supply line to the first electrode, wherein the contact part is formed as multiple layers patterned such that a second conductive layer covers a first conductive layer.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.
Abstract:
A thin-film transistor (“TFT”) array substrate includes: a TFT including an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer disposed between the active layer and the gate electrode, and a second insulating layer disposed between the gate electrode, and the source and drain electrode; a pixel electrode including a transparent conductive oxide and disposed in an opening defined in the second insulating layer; a capacitor including a first electrode disposed on a layer on which the active layer is disposed, and a second electrode disposed on a layer on which the gate electrode is disposed; a pad electrode disposed on the second insulating layer and including a material substantially the same as a material in the source electrode and the drain electrode; a first protective layer disposed on the pad electrode; and a second protective layer disposed on the first protective layer.
Abstract:
A flat panel display device includes a pixel circuit provided on a substrate, a pixel wiring, an inspection pad connected to the pixel circuit through the pixel wiring, a main wiring separated from the inspection pad by a gap, and a common electrode covering substantially the entire substrate and electrically connecting the inspection pad to the main wiring.
Abstract:
A thin-film transistor (“TFT”) array substrate includes: a TFT including an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer disposed between the active layer and the gate electrode, and a second insulating layer disposed between the gate electrode, and the source and drain electrode; a pixel electrode including a transparent conductive oxide and disposed in an opening defined in the second insulating layer; a capacitor including a first electrode disposed on a layer on which the active layer is disposed, and a second electrode disposed on a layer on which the gate electrode is disposed; a pad electrode disposed on the second insulating layer and including a material substantially the same as a material in the source electrode and the drain electrode; a first protective layer disposed on the pad electrode; and a second protective layer disposed on the first protective layer.
Abstract:
An organic light-emitting display apparatus in which electrical communication between an opposing electrode and an electrode power supply line can be more easily checked without adding an additional process in a manufacturing process, and a method of manufacturing the organic light-emitting display apparatus, is provided. The organic light-emitting display apparatus includes thin film transistors and pixel electrodes electrically connected to the thin film transistors in an active area of a substrate, an opposing electrode in the active area and a dead area of the substrate, an electrode power supply line in the dead area of the substrate and having a surface contacting the opposing electrode and configured to supply power to the opposing electrode, and a test line in the dead area of the substrate separated from the electrode power supply line and contacting the opposing electrode.
Abstract:
An organic light-emitting diode (OLED) display apparatus including a substrate, an insulation layer on the substrate, and an align mark formed of an insulation material, wherein an upper surface of the insulation layer contacts a lower surface of the align mark.