Abstract:
An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.
Abstract:
An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.
Abstract:
An organic light-emitting device including: a substrate; a display unit on the substrate; and an encapsulation layer covering the display unit, the encapsulation layer having an alternating stack structure of an organic layer and an inorganic layer, and the organic layer including a polymer polymerized from monomers of Formula 1 and Formula 2:
Abstract:
An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.
Abstract:
An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.
Abstract:
A deposition mask that prevents the occurrence of defects when forming an encapsulation film or securing a long lifespan of the encapsulation film, a method of manufacturing a display apparatus by using the deposition mask, and a display apparatus manufactured by the method. The deposition mask has a first portion and a second portion, the second portion being thicker that the first portion; at least one opening in the first portion, deposition materials being passed through the opening; and a plurality of through-holes in the first portion adjacent to and surrounding the opening, the through-holes extending from an upper surface to a lower surface of the first portion, light being passed through the opening and the plurality of through-holes to irradiate the deposition materials.
Abstract:
A flat display device includes a substrate, a light-emitting diode on the substrate, and a sealing layer on the light-emitting diode, the sealing layer including at least one sealing unit that includes an organic film, an oxygen-free buffer layer on the organic film, and an inorganic film on the oxygen-free buffer layer.
Abstract:
A deposition mask that prevents the occurrence of defects when forming an encapsulation film or securing a long lifespan of the encapsulation film, a method of manufacturing a display apparatus by using the deposition mask, and a display apparatus manufactured by the method. The deposition mask has a first portion and a second portion, the second portion being thicker that the first portion; at least one opening in the first portion, deposition materials being passed through the opening; and a plurality of through-holes in the first portion adjacent to and surrounding the opening, the through-holes extending from an upper surface to a lower surface of the first portion, light being passed through the opening and the plurality of through-holes to irradiate the deposition materials.
Abstract:
An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.
Abstract:
An organic light emitting diode device can have an enhanced thin film encapsulation layer for preventing moisture from permeating from the outside. The thin film encapsulation layer can have a multilayered structure in which one or more inorganic layers and one or more organic layers are alternately laminated. A barrier can be formed outside of a portion of the substrate on which the organic light emitting diode is formed. The organic layers of the thin film encapsulation layer can be formed inside an area defined by the barrier.