Abstract:
An image control panel for a display device includes a first substrate and a second substrate facing each other, a lens electrode formed on the first substrate, a common electrode formed on the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. The common electrode includes a first common electrode and a second common electrode separated from each other.
Abstract:
A method for manufacturing a display device includes the steps of: placing a panel having a first portion and a second portion on a deformable pad having a core member and placing a cover window on the panel; and moving the core member disposed inside the pad from the first portion to the second portion of the panel and pressing the panel to bond the cover window to the panel.
Abstract:
An optical system includes a first panel that includes a plurality of first electrodes; a second panel facing the first panel and that includes a plurality of second electrodes; and an optical conversion layer positioned between the first panel and the second panel that includes an optical conversion material. An electric field generated in the optical conversion layer by the plurality of first electrodes and the plurality of second electrodes in a multi-view mode generates a phase difference in the optical conversion layer based on a location of the optical conversion material. The plurality of second electrodes includes a plurality of sub electrodes and a common electrode, and the plurality of first electrodes and the common electrode forms a touch sensing capacitor to sense a touch in a touch mode.
Abstract:
An optical modulation device, according to an exemplary embodiment of the present invention, includes first and second plates facing each other, the first and second plates including a plurality of regions, and a liquid crystal layer interposed between the first and second plates, the liquid crystal layer including liquid crystal molecules aligned in a vertical alignment (VA) mode. The first plate includes a non-conductive layer including stepped structures repeatedly arranged in a first direction, a first electrode formed to partially cover the non-conductive layer, and first and second aligners disposed in a second direction different from the first direction, wherein the first and second aligners are aligned in opposite directions with respect to each other. The second plate includes a second electrode.
Abstract:
A display device includes a display panel and a liquid crystal lens panel disposed on the display panel. The liquid crystal lens panel includes first and second substrates, first and second electrode layer and a liquid crystal layer interposed between the first and second electrode layers. The first and second substrates face each other. The first electrode layer is disposed on the first substrate. The first electrode layer includes first linear electrodes and second linear electrodes that extend in a first direction. The second electrode layer is disposed on the second substrate. A predetermined common voltage is applied to the second electrode layer. The first and second linear electrodes are spaced apart from each other. Driving voltages are independently applied to the first and second linear electrodes.
Abstract:
A stereoscopic image display device includes: a display panel including a plurality of pixels arranged in a matrix format; and a viewpoint division unit dividing light of a left-eye image and light of a right-eye image displayed by the plurality of dots and transferring the divided light to a plurality of viewpoints corresponding to each dot, wherein the viewpoint division unit includes a plurality of openings and a light blocking unit, and when a horizontal directional width of each of the plurality of openings corresponds to an m number of dots (m is a natural number), a number dots of n adjacent in the horizontal direction displaying the left-eye image and the right-eye image is equal to n=2m+1 or n=2(m+1).
Abstract:
A liquid crystal lens device includes a first substrate including a display area, a first non-display area, and a second non-display area with the display area interposed between the first and second non-display areas. First bus lines are disposed over the first s non-display area. Second bus lines are disposed over the second non-display area and are insulated from the first bus lines. First electrode groups are disposed over the display area and the first non-display area and are connected to the first bus lines. Second electrode groups are disposed over the display area and the second non-display area and are connected to the second bus lines.
Abstract:
A display device may include a display panel configured to display an image. The display device may further include a first electrode overlapping the display panel and separated from the display panel. The display device may further include a second electrode overlapping the first electrode and separated from the display panel. The display device may further include a first liquid crystal layer disposed between the first electrode and a first portion of the second electrode. The display device may further include a third electrode electrically insulated from the first electrode, overlapping the second electrode, and separated from the display panel. The display device may further include a second liquid crystal layer disposed between the third electrode and a second portion of the second electrode.