Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
An organic light emitting display device configured to employ a time division control technique by which one frame is divided into a first field and a second field, and the first field and the second field are sequentially driven includes a display unit. The display unit includes first emission control-lines and second emission control-lines alternately arranged along a first direction, wherein the first emission control-lines and the second emission control-lines extend along a second direction perpendicular to the first direction, and first pixel groups and second pixel groups, wherein the first pixel groups alternate with the second pixel groups along the second direction between the first emission control-lines and the second emission control-lines, wherein each of the first pixel groups is coupled to an adjacent one of the first emission control-lines, and each of the second pixel groups is coupled to an adjacent one of the second emission control-lines.
Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
A pixel for a display panel includes an organic light emitting diode and two driving transistors. The first driving transistor supplies current from a first power source to the organic light emitting diode based on a voltage applied to a first node. The second driving transistor coupled between an electrode of the first driving transistor and the organic light emitting diode. The second driving transistor is turned on or turned off corresponding to a data signal supplied from a data line. A third transistor, coupled between a gate electrode of the second driving transistor and the data line, is turned on when a scan signal is supplied to a scan line. A compensation circuit is coupled to the first node to compensate for a voltage corresponding to a threshold voltage of the first driving transistor.
Abstract:
A flat panel display having an integrated touch screen panel directly formed on a sealing thin film is disclosed. In the display, sensing lines of the touch screen panel are formed to extend to a substrate of the display panel, on which organic light emitting elements are formed, so that the touch screen panel and the display panel are connected to a flexible printed circuit board, thereby simplifying manufacturing processes and decreasing product cost.
Abstract:
A panel driving device includes a voltage generator and a data driver. The voltage generator generates a compensation voltage set and a gamma voltage set and selectively outputs the compensation voltage set or the gamma voltage set. The data driver outputs a reference voltage based on the compensation voltage set and outputs pixel data voltage based on the gamma voltage set.