Abstract:
A display device includes: a substrate including a first pixel area (PA) and a second PA, the first PA being spaced apart from the second PA by a non-PA; a first pixel electrode (PE) overlapping the first PA; a second PE overlapping the second PA; a pixel-defining layer including a first opening overlapping the first PE and a second opening overlapping the second PE; a first intermediate layer (IL) on the first PE, the first IL including a first emission layer (EL); a second IL on the second PE, the second IL including a second EL spaced apart from the first EL; a first opposite electrode (OE) on the first IL; a second OE on the second IL, the second OE being spaced apart from the first OE; and a wiring layer (WL) overlapping the non-PA, the WL contacting respective portions of the first OE and the second OE.
Abstract:
A deposition apparatus includes: a vacuum chamber in which a deposition process is performable; connected to the vacuum chamber: vaporizers in which are vaporizable different deposition materials; and a mixing chamber in which the vaporized different deposition materials are mixable; and within the vacuum chamber: a substrate support on which is supportable a substrate on which the mixed vaporized different deposition materials are deposited in the deposition process; and a spray nozzle which is connected to the mixing chamber and from which the mixed vaporized different deposition materials are sprayable to the substrate in the deposition process. The spray nozzle includes nozzles arranged in a plurality of lines.
Abstract:
A method of manufacturing an organic light-emitting display apparatus includes the step of forming a first pixel electrode and a second pixel electrode on a substrate, forming a pixel-defining film on the first pixel electrode and the second pixel electrode, the pixel-defining film having an opening through which each of the first pixel electrode and the second pixel electrode is exposed, forming a first masking pattern on the pixel-defining film having a first opening portion through which the first pixel electrode is exposed, sequentially forming a first intermediate layer including a first emission layer, a first counter electrode, a first protective layer, and a first anti-decapping layer on the first pixel electrode and the first masking pattern, and removing the first masking pattern along with the first intermediate layer, the first counter electrode, the first protective layer, and the first anti-decapping layer disposed on the first masking pattern.
Abstract:
A display device includes: a circuit element layer comprising a transistor; a display element layer comprising a first electrode connected to the transistor, a second electrode facing the first electrode, an organic pattern between the first electrode and the second electrode, a pixel defining layer having an opening exposing the first electrode, an auxiliary electrode spaced apart from the opening to cover a portion of the pixel defining layer and connected to the second electrode, a first protection pattern covering the second electrode, and a second protection pattern covering the first protection pattern; and an encapsulation layer covering the display element layer, wherein the first protection pattern and the second protection pattern have stress in directions different from each other.
Abstract:
A method of manufacturing an organic light-emitting display apparatus including forming a lift-off layer on a substrate including a first electrode, the lift-off layer including a fluoropolymer; sequentially forming a barrier layer and a photoresist on the lift-off layer, the barrier layer including an inorganic material; patterning the photoresist and the barrier layer to remove a first portion of the photoresist corresponding to the first electrode such that a second portion other than the first portion remains; etching a portion of the lift-off layer corresponding to the first portion to expose the first electrode; forming an organic functional layer and an auxiliary electrode over the first electrode and the second portion of the photoresist, the organic functional layer including an emission layer; and removing the lift-off layer, the barrier layer, the photoresist, the organic functional layer, and the auxiliary electrode remaining on the second portion.
Abstract:
Provided are an organic light-emitting display apparatus and a method of manufacturing the same. The organic light-emitting display apparatus includes a substrate; lower electrodes, the lower electrodes being on the substrate and spaced apart from one another; a pixel-defining film, the pixel-defining film having portions that cover ends of the lower electrodes; upper electrodes, an upper electrode corresponding to each lower electrode, each upper electrode including a first portion contacting the corresponding lower electrode and a second portion contacting the pixel-defining film; organic functional layers, each including an emission layer, an organic functional layer corresponding to each upper electrode and disposed thereon; and an electrode on the organic functional layers.
Abstract:
An organic light-emitting display device includes: first and second pixel electrodes (PEs); a pixel-defining layer (PDL) disposed on the first and second PEs, the pixel-defining layer including first and second openings respectively exposing the first and second PEs; first and second intermediate layers (ILs) respectively disposed on the first and second PEs exposed via the first and second openings, each of the first and second ILs including an emission layer; first and second opposite electrodes (OEs) respectively disposed on the first and second ILs, the first and second OEs having an island-shaped pattern; first and second protective layers (PLs) respectively disposed on the first and second OEs, the first and second PLs having an island-shaped pattern; and a connection layer disposed on the first and second PLs, the connection layer electrically connecting the first and second OEs to one another.
Abstract:
An organic light emitting display device has a plurality of first electrodes, intermediate layers, and second electrodes that correspond to a plurality of pixel areas. The first electrodes are spaced from one another, the second electrodes are spaced from one another, and the intermediate layers are spaced from one another. A conductive protection layer is formed over the second electrodes, and a connection electrode layer is formed over the conductive protection layer and electrically connecting the second electrodes.
Abstract:
A display apparatus including a substrate including a display area and a sensor area, the sensor area including a transmission portion that transmits light, a plurality of first display devices arranged in the display area, a display device group including a plurality of second display devices, the display device group being arranged in the sensor area, and a passivation layer covering the display device group and having a first hole corresponding to the transmission portion.
Abstract:
An organic light emitting display device has a plurality of first electrodes, intermediate layers, and second electrodes that correspond to a plurality of pixel areas. The first electrodes are spaced from one another, the second electrodes are spaced from one another, and the intermediate layers are spaced from one another. A conductive protection layer is formed over the second electrodes, and a connection electrode layer is formed over the conductive protection layer and electrically connecting the second electrodes.