Abstract:
A scan driver includes a plurality of scan driving blocks. Each of the scan driving blocks includes a first shift register including a plurality of driving transistors, the first shift register being configured to provide a first driving signal to a first driving node and to provide a second driving signal to a second driving node, a second shift register including a plurality of masking transistors, the second shift register being configured to provide a masking signal to a masking output node, and a buffer circuit including a plurality of buffer transistors, the buffer circuit being configured to provide scan signals. The buffer circuit outputs the scan signals that include the first pulse or the scan signals that include the first pulse and the second pulse based on the masking signal.
Abstract:
An organic light emitting display device includes pixel driving circuits to control pixels which include organic light emitting diodes. The pixel driving circuits include a first pixel driving circuit and a second pixel driving circuit, and the organic light emitting diodes include a first organic light emitting diode. The first organic light emitting diode emits light at a first brightness based on a driving current from the first pixel driving circuit in a first frame, and emits light at a second brightness based on a driving current from the second pixel driving circuit in a second frame.
Abstract:
A pixel includes an organic light emitting diode and a pixel control circuit. The pixel control circuit includes a first transistor, a second transistor, and a third transistor. The first transistor controls an amount of current to the organic light emitting diode from a first power source based on a voltage applied to a first node. The second transistor is coupled between the first node and a data line and turns on when a scan signal is supplied to a scan line. The third transistor is coupled between the first power source and a second node that is a common terminal of first and second capacitors, which are coupled in series between the first node and the first power source. In operation, the third transistor turns on when a first control signal is supplied to a first control line.
Abstract:
A pixel includes an organic light emitting diode and a pixel circuit. The pixel circuit includes a first transistor to control current from a first power source to the OLED based on a voltage applied to a first node, and a second transistor connected between the first node and a data line, the second transistor to turn on based on a scan signal applied to a scan line. The pixel circuit also includes a controller to supply a voltage from a power line to at least one of the first node or an anode electrode of the OLED.
Abstract:
A display device according to example embodiments includes a display panel divided into a first area including a plurality of first area pixel rows and a second area including a plurality of second area pixel rows, the number of pixels of each of the second area pixel rows being less than the number of pixels of each of the first area pixel rows, a scan driver configured to provide a plurality of scan signals to the display panel based on a width of an active period of a clock signal, the scan signals being output having substantially the same width of active periods to each other, a data driver configured to provide a plurality of data signals to the display panel, and a timing controller configured to adjust the width of the active period of the clock signal within a frame period based on locations of the first area and the second area.
Abstract:
A pixel and an organic light emitting diode (OLED) display using the pixel are disclosed. The pixel includes a driving transistor for transmitting a driving current, an OLED configured to receive a first portion of the driving current and a bypass transistor configured to receive a second portion of the driving current.
Abstract:
A method of repairing a display substrate includes electrically separating a defective pixel circuit from a pixel electrode and irradiating a laser beam on first and second intersection regions. The laser beam is irradiated on the first intersection region to weld a pixel connection part to a first repair line. The pixel connection part is connected to the pixel electrode at the first intersection region, and intersects the first repair line. The first repair line includes a first welding hole at the first intersection region. The laser beam is irradiated on the second intersection region to weld a dummy connection part of a dummy circuit to a second repair line. The second repair line intersects the dummy connection part at the second intersection region, and is separated from the pixel circuit. The second repair line includes a second welding hole at the second intersection region.
Abstract:
A touch screen display is disclosed. In one aspect, the touch screen display includes a plurality of first touch electrodes each including first and second ends opposing each other and a plurality of second touch electrodes crossing the first touch electrodes. The touch screen display also includes a first voltage line providing a voltage, a first signal line providing a touch driving signal, and a plurality of first switching units respectively connected to the first touch electrodes. Each of the first switching units is electrically connected to the first voltage line, the first signal line, and the first end of a corresponding first touch electrode. Each of the first switching units alternately provides one of the voltage and the touch driving signal to the corresponding first touch electrode.