Abstract:
A method of manufacturing a display apparatus includes: preparing a mother substrate; forming a concave portion, which comprises a first concave portion defined on a first surface of the mother substrate and a second concave portion defined on a second surface opposite to the first surface; reinforcing the mother substrate; and cutting the mother substrate in a lengthwise direction of the concave portion. A reinforcement thickness, which is a thickness of a reinforced part of a non-concave portion of the mother substrate from the first surface, is greater than half a value obtained by subtracting a depth of the first concave portion and a depth of the second concave portion, from a thickness of the non-concave portion of the mother substrate.
Abstract:
A display device includes a container, a display panel, a circuit board, and a photographing module. The container provides an internal space in a plane defined by a first direction and a second direction crossing the first direction. The display panel is disposed in the internal space. The display panel is configured to display an image in a third direction crossing the first direction and the second direction. The circuit board is connected to the display panel. The photographing module is disposed in the internal space and is oriented in the first direction. The photographing module includes lenses. At least a portion of the photographing module is surrounded by at least one of the display panel and the circuit board.
Abstract:
An organic light-emitting display apparatus includes a substrate, a display on the substrate, a dam outside the display and spaced from the display, the dam having a stacked multi-layer structure and having a first side surface that faces the display, a second side surface opposite to the display, and a top, a groove in a separation area between the display and the dam, and an encapsulation layer that includes a first inorganic layer and an organic layer on the first inorganic layer, the first inorganic layer covering the display and extending along an inner surface of the groove, and an end of the organic layer being contained in the groove.
Abstract:
A display device includes: a display module including a display area and a non-display area; a protective layer on a lower surface of the display module and including an opening area overlapping with the display area; a sensor unit overlapping with the display area, covering the opening area, and arranged on the protective layer; and an adhesive member adhering the sensor unit and the protective layer.
Abstract:
A display apparatus includes a substrate having a display area and a peripheral area outside the display area, a dam in the peripheral area, a first inorganic layer located in both the display area and the peripheral area and covering the dam, an upper surface of the first inorganic layer being nonplanar, and a roughness of the upper surface at a first part of the first inorganic layer outside the dam being greater than a roughness of the upper surface near a center of the display area, an organic layer covering the first inorganic layer in the display area and a portion of the peripheral area, and a second inorganic layer located in both the display area and the peripheral area and covering the dam and the organic layer.
Abstract:
An organic light-emitting display apparatus includes a substrate, a display on the substrate, a dam outside the display and spaced from the display, the dam having a stacked multi-layer structure and having a first side surface that faces the display, a second side surface opposite to the display, and a top, a groove in a separation area between the display and the dam, and an encapsulation layer that includes a first inorganic layer and an organic layer on the first inorganic layer, the first inorganic layer covering the display and extending along an inner surface of the groove, and an end of the organic layer being contained in the groove.
Abstract:
A display apparatus includes a substrate having a display area and a peripheral area outside the display area, a dam in the peripheral area, a first inorganic layer located in both the display area and the peripheral area and covering the dam, an upper surface of the first inorganic layer being nonplanar, and a roughness of the upper surface at a first part of the first inorganic layer outside the dam being greater than a roughness of the upper surface near a center of the display area, an organic layer covering the first inorganic layer in the display area and a portion of the peripheral area, and a second inorganic layer located in both the display area and the peripheral area and covering the dam and the organic layer.
Abstract:
An organic light-emitting display apparatus includes a substrate, a display on the substrate, a dam outside the display and spaced from the display, the dam having a stacked multi-layer structure and having a first side surface that faces the display, a second side surface opposite to the display, and a top, a groove in a separation area between the display and the dam, and an encapsulation layer that includes a first inorganic layer and an organic layer on the first inorganic layer, the first inorganic layer covering the display and extending along an inner surface of the groove, and an end of the organic layer being contained in the groove.
Abstract:
An organic light-emitting display apparatus includes a substrate, a display on the substrate, a dam outside the display and spaced from the display, the dam having a stacked multi-layer structure and having a first side surface that faces the display, a second side surface opposite to the display, and a top, a groove in a separation area between the display and the dam, and an encapsulation layer that includes a first inorganic layer and an organic layer on the first inorganic layer, the first inorganic layer covering the display and extending along an inner surface of the groove, and an end of the organic layer being contained in the groove.
Abstract:
An organic light-emitting diode (OLED) display includes pixel electrodes, each pixel electrode corresponding to a pixel region disposed in a display region of a substrate, a first pixel region disposed at a center portion of the display region, a second pixel region disposed at an edge portion of the display region, auxiliary lines, each auxiliary line disposed adjacent to at least one pixel electrode, emission layers disposed on the pixel electrodes, and an opposite electrode disposed on the emission layers, the opposite electrode contacting each of the auxiliary lines through contact holes, wherein a total contact area between the opposite electrode and an auxiliary line in the first pixel region is greater than a total contact area between the opposite electrode and the auxiliary line in the second pixel region.