Abstract:
A display device includes: a display panel configured to display an image; a liquid crystal lens panel configured to operate in a 2D mode for recognizing the image as a 2D image and operate in a 3D mode for recognizing the image as a 3D image; and a power supply configured to supply power to the liquid crystal lens panel. The liquid crystal lens panel includes a second electrode layer configured to have a common voltage applied, a first electrode layer facing the second electrode layer and including a plurality of linear electrodes, a first bus line to which some of the plurality of linear electrodes are connected, and a second bus line to which remaining linear electrodes are connected. The power supply is configured to invert a first driving voltage output to the first bus line and a second driving voltage output to the second bus line at different times, and then output them.
Abstract:
A liquid crystal display is provided that includes: a first display panel including a thin film transistor and a plurality of pixel electrodes; a second display panel facing the first display panel with a cell gap therebetween; a lower resistive layer disposed on the first display panel; an upper resistive layer disposed on the second display panel; and a sensing spacer connecting the lower resistive layer and the upper resistive layer.
Abstract:
A curved display device includes a curved panel including a plurality of pixels, and an image compensation processor. The image compensation processor is configured to convert a first image signal into a second image signal by scaling the first image signal based on a curvature of the curved panel and a viewing distance between a viewer and the curved panel, map the second image signal onto corresponding pixels of the curved panel, and provide the mapped second image signal to the corresponding pixels of the curved panel.
Abstract:
A three dimensional image display includes a display panel and a liquid crystal lens positioned on the top of the display panel. The liquid crystal lens comprises a lower substrate, an upper substrate, a lens, and an electrode voltage applying IC. The lower substrate includes a first electrode. The upper substrate includes a second electrode. The upper substrate faces the lower substrate. The lens liquid crystal layer is positioned between the lower substrate and the upper substrate. The electrode voltage applying IC is configured to form a plurality of zones on the first electrode of the lower substrate by sequentially applying first voltage and second voltage to the first electrode. The first voltage includes an overshoot voltage level. The second voltage has an inverted polarity of the first voltage.
Abstract:
There is provided a three-dimensional image display device, including: a display panel including a plurality of signal lines and a plurality of pixels connected to the plurality of signal lines; a viewpoint divider configured to divide an image displayed by the display panel into a plurality of viewpoints; a parameter storage unit configured to store parameters for an alignment between the display panel and the viewpoint divider; an image processor configured to calculate a rendering pitch according to the alignment between the display panel and the viewpoint divider by using the parameters stored in the parameter storage unit and generate an image signal to perform pixel mapping according to the rendering pitch; and a display panel driver configured to receive the image signal to drive the display panel.
Abstract:
A liquid crystal lens includes: a lower substrate; a plurality of driver pad wires positioned at an edge of the lower substrate; a lower lens electrode positioned at a center of the lower substrate; a plurality of wires of a wiring on the lower substrate positioned between the plurality of driver pad wires and the lower lens electrode; an upper substrate positioned facing the lower substrate; an upper lens electrode formed at a bottom surface of the upper substrate; a liquid crystal layer disposed between the upper substrate and the lower substrate; a plurality of first electrodes connecting the lower lens electrode and the plurality of wires of the wiring; and a plurality of second electrodes connecting the plurality of driver pad wires and the plurality of wires of the wiring, and a difference between a driver pad wiring period and a second electrode period is less than 1 μm