Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode display including: a substrate; an organic light emitting diode on the substrate; a capping layer on the organic light emitting diode and including a high refractive layer including an inorganic material having a refractive index that is equal to or greater than about 1.7 and equal to or less than about 6.0; and a thin film encapsulation layer covering the capping layer and the organic light emitting diode, the inorganic material including at least one selected from the group consisting of CuI, thallium iodide (TlI), BaS, Cu2O, CuO, BiI, WO3, TiO2, AgI, CdI2, HgI2, SnI2, PbI2, BiI3, ZnI2, MoO3, Ag2O, CdO, CoO, Pr2O3, SnS, PbS, CdS, CaS, ZnS, ZnTe, PbTe, CdTe, SnSe, PbSe, CdSe, AlAs, GaAs, InAs, GaP, InP, AlP, AlSb, GaSb, and InSb.
Abstract:
An organic light emitting diode (OLED) display according to the present disclosure includes a substrate, a thin film transistor on the substrate, a first electrode on the thin film transistor and electrically coupled to the thin film transistor, an organic emission layer on the first electrode, a second electrode on the organic emission layer, and a capping layer on the second electrode, wherein a thickness of the second electrode is about 65 Å to about 125 Å, and wherein a thickness of the capping layer is about (500*1.88/n) Å to about (700*1.88/n) Å, n being an optical constant of the capping layer.
Abstract:
An organic light emitting element according to an example embodiment of the present disclosure includes: an anode and a cathode facing each other; an emission layer between the anode and the cathode; an electron transfer layer between the emission layer and the cathode; and a buffer layer between the cathode and the electron transfer layer, wherein the buffer layer includes an inorganic metal halide having p-type semiconductor characteristics.
Abstract:
An organic light emitting diode includes: a first electrode and a second electrode that face each other; a middle layer on the first electrode; a hole transport layer on the middle layer; and an emission layer between the hole transport layer and the second electrode, wherein the middle layer includes a bipolar material formed by combining a first material including at least selected from a group 1 element, a group 2 element, a lanthanide metal, with a second material including a halogen element.
Abstract:
A light emitting diode display includes: a substrate; a light emitting element on the substrate; and a capping layer on the organic light emitting element and including a plurality of refractive layers each including a low refraction layer and a high refraction layer, wherein the high refraction layer includes a first inorganic material having a refractive index which is equal to or greater than about 1.7 and equal to or less than about 6.0, wherein the low refraction layer includes a second inorganic material having a refractive index which is equal to or greater than about 1.0 and equal to or less than about 1.7, and wherein the second inorganic material comprises at least one selected from LiF, AlF3, NaF, KF, RbF, CaF2, SrF2, and YbF2.
Abstract:
An organic light emitting diode display including: a substrate; an organic light emitting diode on the substrate; a capping layer on the organic light emitting diode and including a high refractive layer including an inorganic material having a refractive index that is equal to or greater than about 1.7 and equal to or less than about 6.0; and a thin film encapsulation layer covering the capping layer and the organic light emitting diode, the inorganic material including at least one selected from the group consisting of CuI, thallium iodide (TlI), BaS, Cu2O, CuO, BiI, WO3, TiO2, AgI, CdI2, HgI2, SnI2, PbI2, BiI3, ZnI2, MoO3, Ag2O, CdO, CoO, Pr2O3, SnS, PbS, CdS, CaS, ZnS, ZnTe, PbTe, CdTe, SnSe, PbSe, CdSe, AlAs, GaAs, InAs, GaP, InP, AlP, AlSb, GaSb, and InSb.
Abstract:
According to an embodiment of the present disclosure, an organic light emitting diode includes: a first electrode; a second electrode overlapping the first electrode; an emission layer positioned between the first electrode and the second electrode; an electron injection layer positioned between the emission layer and the second electrode; and an electron injection delay layer positioned between the emission layer and the electron injection layer, wherein the electron injection layer includes a first material made of a metal and a second material made of a metal halide, and the electron injection delay layer has a thickness of about 20 Å to about 140 Å.
Abstract:
An organic light emitting diode display, including a substrate; a thin film transistor on the substrate; a first electrode on the thin film transistor and electrically connected to the thin film transistor; an organic emission layer on the first electrode; a second electrode on the organic emission layer; and a first capping layer on the second electrode and a second capping layer on the first capping layer, the second capping layer being thicker than the first capping layer.
Abstract:
A quantum dot includes: a core including at least one first positive ion precursor and at least one negative ion precursor; a shell including at least one second positive ion precursor and at least one negative ion precursor and wrapping the core; and a ligand formed on a surface of the shell, wherein the first positive ion precursor is an n-period element and the second positive ion precursor is an (n-1)-period element, where n is an integer of 3 to 6.