Abstract:
An organic light-emitting display device, a method of manufacturing the same, and a donor substrate and a donor substrate set used to manufacture the organic light-emitting display device. According to an aspect of the present invention, there is provided an organic light-emitting display device comprising a substrate which comprises a green region and a red region, a plurality of first electrodes which are formed on the green region and the red region of the substrate, respectively, a plurality of light-emitting layers which are formed on the first electrodes and comprise a green light-emitting layer formed on the green region and a red light-emitting layer formed on the red region, and a second electrode which is formed on the light-emitting layers, wherein the green light-emitting layer comprises a first light-emitting layer which comprises a first host material and a first dopant material and a first buffer layer which is formed on the first light-emitting layer and comprises the first host material, and the red light-emitting layer comprises a second light-emitting layer which comprises a second host material and a second dopant material and a second buffer layer which is formed on the second light-emitting layer and comprises the first host material.
Abstract:
An organic light-emitting display including a substrate having a first pixel area to emit a light of a first color and a second pixel area to emit a light of a second color, a first anode disposed on the first pixel area and a second anode disposed on the second pixel area, a first emitting layer disposed on the first anode and a second emitting layer disposed on the second anode, the first emitting layer including a fluorescent light-emitting material and the second emitting layer including a first phosphorescent light-emitting material, a first buffer layer disposed on the first emitting layer and a second buffer layer disposed on the second emitting layer, the first buffer layer and the second buffer layer being formed of different materials, and a first cathode disposed on the first buffer layer and a second cathode disposed on the second buffer layer.
Abstract:
Organic light-emitting display device and method of manufacturing the same are provided. Here, the organic light-emitting display device includes a substrate which has a first area and a second area, a first electrode which is on each of the first area and the second area of the substrate, a plurality of emitting layers on the first electrode and including a first emitting layer on the first area and a second emitting layer on the second area, a second electrode on the emitting layers, a capping layer on the second electrode, and a refractive pattern on the capping layer, wherein the refractive pattern is on at least one of the first area and the second area.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes red, green, and blue pixels. Each pixel includes a pixel electrode, a hole auxiliary layer formed over the pixel electrode, and an organic emission layer formed over the hole auxiliary layer. Each pixel also includes an electron auxiliary layer formed over the organic emission layer, and a common electrode formed over the electron auxiliary layer. Each of the red and green pixels further includes a host layer formed between the hole auxiliary layer and the organic emission layer and a resonance layer formed between the host layer and the organic emission layer.
Abstract:
An organic light-emitting display device, a method of manufacturing the same, and a donor substrate and a donor substrate set used to manufacture the organic light-emitting display device. According to an aspect of the present invention, there is provided an organic light-emitting display device comprising a substrate which comprises a green region and a red region, a plurality of first electrodes which are formed on the green region and the red region of the substrate, respectively, a plurality of light-emitting layers which are formed on the first electrodes and comprise a green light-emitting layer formed on the green region and a red light-emitting layer formed on the red region, and a second electrode which is formed on the light-emitting layers, wherein the green light-emitting layer comprises a first light-emitting layer which comprises a first host material and a first dopant material and a first buffer layer which is formed on the first light-emitting layer and comprises the first host material, and the red light-emitting layer comprises a second light-emitting layer which comprises a second host material and a second dopant material and a second buffer layer which is formed on the second light-emitting layer and comprises the first host material.
Abstract:
An organic layer forming apparatus includes a donor film supply part configured to supply a donor film. The donor film includes a base substrate, a transfer layer disposed on the base substrate, and a protective film disposed on the transfer layer. The apparatus also includes a protective film withdrawal part configured to remove the protective film from the donor film, a transfer printing process part configured to transfer the transfer layer of the donor film onto a transfer substrate to form a first organic layer, a first deposition part configured to form a second organic layer on the transfer layer through a first deposition process, a second deposition part configured to form a third organic layer on the transfer layer through a second deposition process, and a donor film withdrawal part configured to withdraw the donor film.
Abstract:
An organic light emitting element according to an exemplary embodiment of the present invention includes a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; and a hole auxiliary layer between the first electrode and the emission layer. The hole auxiliary layer includes at least one hole blocking layer and at least one hole transport layer contacting the hole blocking layer, and a thickness of the hole auxiliary layer is in a range of 140 angstroms to 220 angstroms.
Abstract:
An organic light emitting element according to an exemplary embodiment of the present invention includes a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; and a hole auxiliary layer between the first electrode and the emission layer. The hole auxiliary layer includes at least one hole blocking layer and at least one hole transport layer contacting the hole blocking layer, and a thickness of the hole auxiliary layer is in a range of 140 angstroms to 220 angstroms.
Abstract:
An organic light-emitting display device, a method of manufacturing the same, and a donor substrate and a donor substrate set used to manufacture the organic light-emitting display device. According to an aspect of the present invention, there is provided an organic light-emitting display device comprising a substrate which comprises a green region and a red region, a plurality of first electrodes which are formed on the green region and the red region of the substrate, respectively, a plurality of light-emitting layers which are formed on the first electrodes and comprise a green light-emitting layer formed on the green region and a red light-emitting layer formed on the red region, and a second electrode which is formed on the light-emitting layers, wherein the green light-emitting layer comprises a first light-emitting layer which comprises a first host material and a first dopant material and a first buffer layer which is formed on the first light-emitting layer and comprises the first host material, and the red light-emitting layer comprises a second light-emitting layer which comprises a second host material and a second dopant material and a second buffer layer which is formed on the second light-emitting layer and comprises the first host material.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes red, green, and blue pixels. Each pixel includes a pixel electrode, a hole auxiliary layer formed over the pixel electrode, and an organic emission layer formed over the hole auxiliary layer. Each pixel also includes an electron auxiliary layer formed over the organic emission layer, and a common electrode formed over the electron auxiliary layer. Each of the red and green pixels further includes a host layer formed between the hole auxiliary layer and the organic emission layer and a resonance layer formed between the host layer and the organic emission layer.