Abstract:
A light-emitting display device includes a substrate having a plurality of pixels. A first electrode is provided on the substrate for each pixel, and a pixel defining layer defines each of the pixels. The pixel defining layer has an opening to expose the first electrode. A charge injection layer is on the first electrode, and a surface processing layer is on the charge injection layer. The surface processing layer extends from inside the opening of the pixel defining layer to a top surface of the pixel defining layer. The surface processing layer including a plurality of grooves in a portion extending on the top surface of the pixel defining layer. A charge transport layer is on the surface processing layer, a light-emitting layer is on the charge transport layer, and a second electrode is on the light-emitting layer.
Abstract:
An Inkjet printer includes a substrate on a stage. A print head unit is positioned above the stage and discharges an ink on the substrate. The print head unit includes a manifold for guiding movement of the ink in a first direction therein. A head block is under the manifold and includes a plurality of channels connected to the manifold and piezoelectric elements adjacent to the channels to discharge the ink through the channels. A nozzle unit is under the head block and includes nozzles corresponding to the channels. A dispersion plate is between the manifold and the head block and disperses the ink in a second direction intersecting the first direction to supply the ink to the head block. Resistance plates are between the dispersion plate and the head block, are formed parallel substantially to the second direction, and prevent the ink from flowing in the first direction.
Abstract:
A light-emitting display device includes a pixel defining layer with an opening that exposes a first electrode, a hole injection layer on the first electrode, a lyophilic pattern on the hole injection layer in the opening, a hole transport layer on the lyophilic pattern, a light-emitting layer on the hole transport layer, and a second electrode on the light-emitting layer. The lyophilic pattern includes a first part adjacent to a first sidewall of the opening and a second part adjacent to a second sidewall of the opening. A distance from a top surface of the hole injection layer to an edge of a top surface of the second part corresponds to a first height. A distance from the top surface of the hole injection layer to a top surface of the first part corresponds to a second height. The first height is lower than the second height.
Abstract:
An organic light-emitting display panel and a method of fabricating the same, the panel including a base substrate; a first electrode layer including a plurality of first electrodes arranged on the base substrate; a pixel-defining layer including partition walls that extend from the base substrate and that define a plurality of pixels; an organic light-emitting layer including a plurality of organic light-emitting patterns in the pixels, respectively; and a second electrode layer on the organic light-emitting layer, wherein the organic light-emitting layer includes a plurality of primer patterns, the plurality of primer patterns being respectively formed in the pixels, being separate from one another, and respectively overlapping the first electrodes, at least one of the primer patterns has an area different area from an area of the other primer patterns, and the primer patterns have an affinity for liquid that is higher than an affinity for liquid of the pixel-defining layer.
Abstract:
A method of manufacturing an organic electroluminescence device is disclosed. In one aspect, the method includes forming color patterns on a substrate, and forming a pixel defining layer between the color patterns.
Abstract:
The light emitting display device comprises: a substrate including a plurality of pixels that are arranged in a first direction and a second direction that crosses the first direction; a first electrode for each pixel on the substrate; a pixel defining layer on the substrate, the pixel defining layer having an opening for exposing the first electrode; a hole injection layer on the first electrode; a lyophilic pattern extending on the hole injection layer to cover the first electrode and the pixel defining layer that are on a same line in the first direction, and extending up to an outer region of outermost pixels of the plurality of pixels in the first direction; a hole transport layer on the lyophilic pattern; a light emitting layer on the hole transport layer; and a second electrode on the light emitting layer, wherein the lyophilic pattern includes a first lyophilic pattern having a plurality of grooves on one end portion thereof in the first direction and a second lyophilic pattern having a plurality of grooves on another end portion thereof in the first direction, and wherein the first lyophilic pattern and the second lyophilic pattern are alternately arranged in the second direction.
Abstract:
A light-emitting display device includes a substrate having a plurality of pixels. A first electrode is provided on the substrate for each pixel, and a pixel defining layer defines each of the pixels. The pixel defining layer has an opening to expose the first electrode. A charge injection layer is on the first electrode, and a surface processing layer is on the charge injection layer. The surface processing layer extends from inside the opening of the pixel defining layer to a top surface of the pixel defining layer. The surface processing layer including a plurality of grooves in a portion extending on the top surface of the pixel defining layer. A charge transport layer is on the surface processing layer, a light-emitting layer is on the charge transport layer, and a second electrode is on the light-emitting layer.
Abstract:
Provided are an apparatus for manufacturing an OLED display and a method of manufacturing OLED display. According to another aspect of the present invention, there is provided the method of manufacturing an OLED display which includes placing a substrate having rows and columns of pixels through on a stage, ejecting organic light-emitting ink to the pixels through on the substrate by using a print head placed above the stage, and sequentially covering pixels through coated with the organic light-emitting ink with a cover plate placed above the stage.
Abstract:
Provided are an apparatus for manufacturing an OLED display and a method of manufacturing OLED display. According to another aspect of the present invention, there is provided the method of manufacturing an OLED display which includes placing a substrate having rows and columns of pixels through on a stage, ejecting organic light-emitting ink to the pixels through on the substrate by using a print head placed above the stage, and sequentially covering pixels through coated with the organic light-emitting ink with a cover plate placed above the stage.
Abstract:
A display device includes a plurality of pixels, a first bank defining light emission regions of the plurality of pixels, a first electrode and a second electrode which are spaced apart from each other in each of the light emission regions, and a plurality of light emitting elements disposed between the first electrode and the second electrode. The first bank, the first electrode, and the second electrode include a same material.