Abstract:
A ceramics dispersion liquid is provided. The dispersion liquid may form an applied film easily recovering hydrophilic properties with light irradiation even when contaminated by lipophilic materials. The ceramics dispersion liquid comprises a ceramics, a dispersion medium, and at least one compound selected from a carboxylic acid, an ammonium carboxylate, a salt of carboxylic acid with metal selected from Ia group, IIa group, IIIa group, Va group, VIa group, VIIa group, VIII group, Ib group, IIb group, IIIb group, IVb group and lanthanoid group, and a salt of oxalic acid with metal selected from IVa group.
Abstract:
A titanium oxide showing sufficiently high photocatalytic activities by irradiation of visible light is provided. Using the titanium oxide, an excellent photocatalyst and photocatalyst coating composition are also provided. The titanium oxide has a selected ion chromatogram in which an evolution gas having 28 of a ratio of mass number to electric charge quantity exhibits at least one peak at about 600null C. or higher, the selected ion chromatogram being measured in a thermogravimetry-mass-spectroscopy.
Abstract:
A titanium oxide precursor which is used for producing a fine-particle titanium oxide showing a high photocatalytic activity is provided. The titanium oxide precursor is an oxygen-atom-containing titanium compound other than anatase-form titanium oxide, and has a maximum exothermic peak at a temperature in the range of from about 30null C. to about 500null C. in a differential thermal analysis curve and shows decrease in weight in a thermogravimetry curve at about the same temperature at which the maximum exothermic peak is shown in the differential thermal analysis curve when subjected to a thermogravimetry and differential thermal analysis under the condition of a temperature rising rate of 20null C./min.
Abstract:
A titanium hydroxide is provided which can be utilized for producing a photocatalyst exhibiting a superior photocatalytic activity by irradiation of visible light. The titanium hydroxide has a primary differential spectrum (of radial structure function in connection with titanium K absorption edge) having maximal intensities (U1 and U2) and minimal intensities (L1 and L2) at interatomic distances in the range of from 1.4 null to 2.8 null, the maximal intensities being at an interatomic distance of from 1.4 null to 1.7 null and of from 2.2 null to 2.5 null and the minimal intensities being at an interatomic distance of from 1.9 null to 2.2 null and of from 2.5 null to 2.8 null; and index X calculated by the equation Xnull(U2nullL2)/(U1nullL1) of about 0.06 or more.
Abstract:
A photocatalyst is provided, which comprises a titanium oxide and a metal-containing compound other than titanium oxide on the surface of the titanium oxide, wherein the metal-containing compound is a metal oxide having an acid site and the photocatalyst has a BET specific surface area of about 55 m2/g or larger, or wherein the metal-containing compound is a basic metal-containing compound and the photocatalyst has an anatase-crystalline structure and an anatase-crystalline size of about 10 nm or larger. The photocatalyst shows sufficiently high photocatalytic activities by irradiation of visible light.