Abstract:
An image sensor includes an array of pixels, with each pixel including a photodiode, and a first output circuit for deriving a linear output signal by applying a reset signal to the photodiode and reading a voltage on the photodiode after an integration time. A second output circuit derives a logarithmic output signal by reading a near instantaneous illumination-dependent voltage on the photodiode that is a logarithmic function of the illumination. In the logarithmic mode, the pixels are calibrated to remove fixed pattern noise. The pixels may be operated in linear and log modes sequentially, with the linear output being selected for low light signals and the log output being selected for high light signals.
Abstract:
An image sensor has an array of pixels read by column circuits to provide reset and read samples on a pair of sample capacitors. To alleviate the effects of parasitic capacitance in the region of the sample capacitors, a modified timing arrangement is used. Both sample switches are operated simultaneously to pre-charge both sample capacitors with a pixel signal value. One sample switch is operated after reset to apply a reset value to one of the pre-charged sample capacitors.
Abstract:
An active pixel array has the signal output of each pixel connected to a first column conductor, and a reset switch connected to a second column conductor. The first and second column conductors are connected to a read-reset amplifier. The read-reset amplifier operates in a first mode in which a reset voltage is applied to the second column line, and in a second mode in which pixel output signals are buffered from the first column line. The read-reset amplifier can also operate as a comparator forming part of an ADC circuit.
Abstract:
An image plane includes a plurality of pixels. Each pixel comprises a photodiode and two transistors, and each pixel is connected by a signal bus to a respective storage node located off the image plane. Each storage node comprises two capacitors and associated switches. One of the transistors applies a reset pulse to the pixel, and the other transistor connects the pixel to a given conductor of the signal bus, which is then connected to the storage node. The pixel transistors can be operated simultaneously, and the sensed values can subsequently be transferred from the storage nodes sequentially.
Abstract:
A logarithmic pixel is formed by a photodiode connected to a semiconductor device that is operating based upon a sub-threshold. A logarithmic output is taken from an output node connected to the pixel via an amplifier. To calibrate the pixel, the photodiode is isolated by a switch and a ramp voltage is applied as reference voltage to the amplifier. The ramp voltage acts across the constant internal capacitance of the pixel to produce in-pixel a constant current for calibration purposes.
Abstract:
Lighting flicker in the output of a video imaging device is detected. The video imaging device has a main picture area divided into pixels for producing successive images at a frame rate. A series of signals are produced from at least one additional picture area adjacent the main picture area, with the additional picture area having a size substantially larger than a pixel. Each of the signals is a function of light incident on the additional picture area in a time period substantially shorter than that of the frame rate. A predetermined number of the signals are accumulated to form a series of compound samples, and the compound samples are filtered to detect components indicating the lighting flicker. The filtering is performed using a bandpass filter tuned to the nominal flicker frequency. The compound samples are formed at a sample rate which is a multiple of the nominal flicker frequency, and the filtering is performed by taking the fundamental output component of a radix-N butterfly.
Abstract:
A solid state image sensor may include a pixel array of an active pixel type including three transistors and a photodiode for each pixel. Pixel reset values may be read out one row at a time and stored in a frame store. Pixel signal values may also be read out a row at a time. The stored reset values may be subtracted, for example, by a read/write/modify circuit to remove kTC noise. The readout of the reset and signal values may be interleaved, and the offset between read and reset for each row may be selected to control frame exposure.
Abstract:
A method of operating a solid state image sensor having an image sensing array that includes a plurality of active pixels comprises resetting each pixel, and after successive time periods reading outputs from each pixel to obtain multiple sets of image data having different dynamic ranges without resetting the pixels between the successive time periods. The sets of image data are combined to obtain a resultant set of image data having a further dynamic range different from the individual dynamic ranges of the multiple data sets. Images are obtained having low noise, a wide dynamic range, and are resistant to lighting-induced flicker.