Abstract:
The present invention relates to a method and apparatus for tailoring the output of an intelligent automated assistant. One embodiment of a method for conducting an interaction with a human user includes collecting data about the user using a multimodal set of sensors positioned in a vicinity of the user, making a set of inferences about the user in accordance with the data, and tailoring an output to be delivered to the user in accordance with the set of inferences.
Abstract:
The present invention relates to a method and apparatus for tailoring the output of an intelligent automated assistant. One embodiment of a method for conducting an interaction with a human user includes collecting data about the user using a multimodal set of sensors positioned in a vicinity of the user, making a set of inferences about the user in accordance with the data, and tailoring an output to be delivered to the user in accordance with the set of inferences.
Abstract:
In general, the disclosure describes techniques for detecting synthetic speech in an audio clip. In an example, a computing system may include processing circuitry and memory for executing a machine learning system. The machine learning system may be configured to process an audio clip to generate a plurality of speech artifact embeddings based on a plurality of synthetic speech artifact features. The machine learning system may further be configured to compute one or more scores based on the plurality of speech artifact embeddings. The machine learning system may further be configured to determine, based on the one or more scores, whether one or more frames of the audio clip include synthetic speech. The machine learning system may further be configured to output an indication of whether the one or more frames of the audio clip include synthetic speech.
Abstract:
In general, the disclosure describes techniques for obtaining, by a computing system, a content item and a purported source for the content item, wherein the content item may include multimodal data. The techniques may further include generating, by the computing system, a plurality of modality feature vectors representative of the multimodal data, wherein each of the generated modality feature vectors has a different, corresponding modality feature. The techniques may further include mapping, by the computing system, the generated modality feature vectors based on a statistical distribution associated with the purported source. The techniques may further include determining, by the computing system, a score based on the mapping. The techniques may further include outputting, by the computing system and based on the score, an indication of whether the content item originated from the purported source.
Abstract:
Systems and methods for speech recognition are provided. In some aspects, the method comprises receiving, using an input, an audio signal. The method further comprises splitting the audio signal into auditory test segments. The method further comprises extracting, from each of the auditory test segments, a set of acoustic features. The method further comprises applying the set of acoustic features to a deep neural network to produce a hypothesis for the corresponding auditory test segment. The method further comprises selectively performing one or more of: indirect adaptation of the deep neural network and direct adaptation of the deep neural network.
Abstract:
Embodiments of the disclosed technologies include finding content of interest in an RF spectrum by automatically scanning the RF spectrum; detecting, in a range of frequencies of the RF spectrum that includes one or more undefined channels, a candidate RF segment; where the candidate RF segment includes a frequency-bound time segment of electromagnetic energy; executing a machine learning-based process to determine, for the candidate RF segment, signal characterization data indicative of one or more of: a frequency range, a modulation type, a timestamp; using the signal characterization data to determine whether audio contained in the candidate RF segment corresponds to a search criterion; in response to determining that the candidate RF segment corresponds to the search criterion, outputting, through an electronic device, data indicative of the candidate RF segment; where the data indicative of the candidate RF segment is output in a real-time time interval after the candidate RF segment is detected.
Abstract:
A computer-implemented method can include a speech collection module collecting a speech pattern from a patient, a speech feature computation module computing at least one speech feature from the collected speech pattern, a mental health determination module determining a state-of-mind of the patient based at least in part on the at least one computed speech feature, and an output module providing an indication of a diagnosis with regard to a possibility that the patient is suffering from a certain condition such as depression or Post-Traumatic Stress Disorder (PTSD).
Abstract:
Embodiments of the disclosed technologies include finding content of interest in an RF spectrum by automatically scanning the RF spectrum; detecting, in a range of frequencies of the RF spectrum that includes one or more undefined channels, a candidate RF segment; where the candidate RF segment includes a frequency-bound time segment of electromagnetic energy; executing a machine learning-based process to determine, for the candidate RF segment, signal characterization data indicative of one or more of: a frequency range, a modulation type, a timestamp; using the signal characterization data to determine whether audio contained in the candidate RF segment corresponds to a search criterion; in response to determining that the candidate RF segment corresponds to the search criterion, outputting, through an electronic device, data indicative of the candidate RF segment; where the data indicative of the candidate RF segment is output in a real-time time interval after the candidate RF segment is detected.
Abstract:
Systems and methods for speech recognition are provided. In some aspects, the method comprises receiving, using an input, an audio signal. The method further comprises splitting the audio signal into auditory test segments. The method further comprises extracting, from each of the auditory test segments, a set of acoustic features. The method further comprises applying the set of acoustic features to a deep neural network to produce a hypothesis for the corresponding auditory test segment. The method further comprises selectively performing one or more of: indirect adaptation of the deep neural network and direct adaptation of the deep neural network.
Abstract:
A computer-implemented method can include a speech collection module collecting a speech pattern from a patient, a speech feature computation module computing at least one speech feature from the collected speech pattern, a mental health determination module determining a state-of-mind of the patient based at least in part on the at least one computed speech feature, and an output module providing an indication of a diagnosis with regard to a possibility that the patient is suffering from a certain condition such as depression or Post-Traumatic Stress Disorder (PTSD).