Abstract:
A node within a wireless mesh network is configured to forward a high-priority message to adjacent nodes in the wireless mesh network by either (i) transmitting the message during successive timeslots to the largest subset of nodes capable of receiving transmissions during each timeslot, or (ii) transmitting the message on each different channel during the timeslot when the largest subset of nodes are capable of receiving transmissions on each of those channels.
Abstract:
A node within a wireless mesh network is configured to forward a high-priority message to adjacent nodes in the wireless mesh network by either (i) transmitting the message during successive timeslots to the largest subset of nodes capable of receiving transmissions during each timeslot, or (ii) transmitting the message on each different channel during the timeslot when the largest subset of nodes are capable of receiving transmissions on each of those channels.
Abstract:
A node within a wireless mesh network is configured to select a primary path through an access point and to designate that access point as the primary access point for the node. The access point then transmits a failover message indicating that the node designated that access point as the primary access point for the node at a particular time. When another access point receives the failover message, the other access point may determine that the first node has also designated the other access point as the primary access point for the node, and may then de-register the node and stop advertising a primary path to the node.
Abstract:
One embodiment of the present disclosure sets forth a technique for convergence and automatic disabling of access points in a wireless mesh network. Specifically, an access point within a wireless mesh network computes one or more network metrics to determine whether the metrics are unfavorable or favorable. If the network metrics are favorable, then the access point disables the access point's network connection. An access point turns the network connection back on based on whether a routing was lost for at least a preset amount of time, utilization of one or more neighboring access points is above a preset value, or one or more network metrics have degraded by a certain percentage value. One advantage of this approach is that cost savings may be achieved when the number of access points dynamically changes to accommodate varying communications conditions.
Abstract:
A method for controlling a light source associated with an environment includes: receiving, over a wireless mesh network and by a control node corresponding to the light source, a first light intensity value for the environment from a first sensor node; calculating, by the control node, a resulting light intensity (RLI) value based on the first intensity value; determining, by the control node, that the RLI value exceeds a light intensity threshold; and modifying, by the control node and in response to determining the RLI value exceeds the light intensity threshold, an output of the first light source.
Abstract:
A node within a wireless mesh network is configured to forward a high-priority message to adjacent nodes in the wireless mesh network by either (i) transmitting the message during successive timeslots to the largest subset of nodes capable of receiving transmissions during each timeslot, or (ii) transmitting the message on each different channel during the timeslot when the largest subset of nodes are capable of receiving transmissions on each of those channels.
Abstract:
In an embodiment, triplets of network-enabled FCIs operate to monitor the three phases of a power distribution system. In being network-enabled, the FCIs also operate as nodes of an RF mesh network. In an embodiment, upon the detection of a power failure, the triplet of network FCIs is serially operated so as to extend their networking capabilities by approximately three times.
Abstract:
A node residing within a wireless mesh network is configured to transmit a state transition message to a downstream node also residing within the wireless mesh network. The state transition message indicates a new operating state for the downstream node. Upon receipt of the state transition message, the downstream node may transition to the new operating state and then transmit an acknowledgement message back to the node that sent the state transition message. Alternatively, the downstream node may transmit the acknowledgement message back to the node that sent the state transition message first, and then transition to the new operating state.
Abstract:
A method for controlling a light source associated with an environment includes: receiving, over a wireless mesh network and by a control node corresponding to the light source, a first light intensity value for the environment from a first sensor node; calculating, by the control node, a resulting light intensity (RLI) value based on the first intensity value; determining, by the control node, that the RLI value exceeds a light intensity threshold; and modifying, by the control node and in response to determining the RLI value exceeds the light intensity threshold, an output of the first light source.
Abstract:
A node residing within a wireless mesh network is configured to transmit a state transition message to a downstream node also residing within the wireless mesh network. The state transition message indicates a new operating state for the downstream node. Upon receipt of the state transition message, the downstream node may transition to the new operating state and then transmit an acknowledgement message back to the node that sent the state transition message. Alternatively, the downstream node may transmit the acknowledgement message back to the node that sent the state transition message first, and then transition to the new operating state.