Abstract:
A distance-measuring optoelectronic sensor (10) uses two sampling memories for detection of objects in a monitoring zone (20). The sensor (10) has a light transmitter (12) for transmitting a transmission light pulse (16) into the monitoring area (20), a light receiver (26) for generating a reception signal from the light pulse (22) remitted by objects in the monitoring area (20), a control and evaluation unit (32) configured to determine a reception point in time from the reception signal and the distance of the object by means of a light time of flight method, and a first and second sampling memory (34a, 34b) having a plurality of memory cells each for storing a section of the reception signal. Partially overlapping recording regions are used, with each alternately recording a reception signal for a longer duration than a time interval between two successive transmission light pulses (16).
Abstract:
An optoelectronic sensor (10) for distance determination comprises a transmitter (12) for transmitting a light beam (14) having a plurality of consecutive individual light pulses, a rotatable deflection unit (16) for deflecting the light beam (14), an angle measuring unit (28) for determining an angular position of the deflection unit (16), a light receiver (24) for generating reception pulses from remitted transmission light, a plurality of histogram memories (34) each associated with an angular position, and an evaluation unit (30) which is configured to accumulate time histograms in the histogram memories (34) across several periods of the rotational movement of the deflection unit (16) from reception pulses which are each detected at the angular position associated with the respective histogram memory (34), and to determine, from the histograms of the associated histogram memory (34), an object distance for an angular position.