摘要:
An image sensor may include an array of pixels. Pixels in the array may include a photodiode that converts incident light into electrical charge and a charge storage region for storing the electrical charge before it is read out from the pixel. Pixels in the array may include a microlens formed over the photodiode that directs light onto the photodiode. Pixels in the array may include an additional array of microlenses between the microlens and the photodiode. The additional array of microlenses may direct light away from the charge storage region to prevent charge stored at the charge storage region from being affected by light that is not incident upon the photodiode. The image sensor may be a backside illuminated image sensor that operates in a global shutter mode.
摘要:
Color filters may affect imaging performance attributes such as low light sensitivity, color accuracy, and modulation transfer function (MTF). In an image pixel array, these factors are influenced by both the spectral absorption and pattern of the color filter elements. Different portions of an image sensor may prioritize different imaging performance attributes. Accordingly, in certain applications it may be beneficial for color filter characteristics to vary across an image sensor. Different color filters of the same color may have different structures to optimize imaging performance across the image sensor.
摘要:
A backside illuminated image sensor with an array of pixels formed in a substrate is provided. To improve surface planarity, bond pads formed at the periphery of the array of pixels may be recessed into a back surface of the substrate. The bond pads may be recessed into a semiconductor layer of the substrate, may be recessed into a window in the semiconductor layer, or may be recessed in a passivation layer and covered with non-conductive material such as resin. In order to further improve surface planarity, a window may be formed in the semiconductor layer at the periphery of the array of pixels, or scribe region, over alignment structures. By providing an image sensor with improved surface planarity, device yield and time-to-market may be improved, and window framing defects and microlens/color filter non-uniformity may be reduced.
摘要:
An imaging system may include an image sensor having an array of pixels. The image sensor may include an array of microlenses formed over a substrate and an array of color filter elements interposed between the microlenses and the substrate. Dielectric wall structures may be interposed between the color filter elements. Light shield structures may be formed within or on the dielectric wall structures and may be used to reduce optical crosstalk between adjacent pixels. The light shield structures may be formed on opposing sides or corners of the color filter elements and may partially or fully extend along the height of the color filter elements. In some arrangements, the light shield structures may each have a vertical portion that contacts a side surface of an adjacent color filter element and a horizontal portion that contacts a lower surface of an adjacent color filter element.
摘要:
A system may include an image sensor having a pixel array that receives light in an environment. The light received at the pixel array may be transmitted by an external device that encodes information using the wavelength, spatial patterning, temporal patterning, or other characteristics of the light. In response to receiving the light, the pixel array may generate electrical signals that are processed to decode the information in the light. The system may compare the decoded information to user preferences to determine if the information is relevant to a user. In response to determining that the information is relevant to the user, the system may display the information to the user, transmit a pulse including user preference information, or change an operating state of the image sensor.
摘要:
An imaging device may include a primary imaging sensor and a secondary imaging sensor. The secondary imaging sensor may monitor a scene being imaged by the imaging device for trigger criteria such as sudden movement, changes in the intensity of ambient light, and the presence of a particular object or person. Upon detection of relevant trigger criteria, the imaging device may activate the primary imaging sensor and capture one or more images of the scene with the primary imaging sensor. Operational parameters of the primary imaging sensor including framerate and exposure settings may be based on data from the secondary imaging sensor. The secondary imaging sensor may have a lower power consumption than the primary imaging sensor such that monitoring the scene with the secondary imaging sensor and only activating the primary imaging sensor upon detection of the relevant trigger criteria enables an efficient and adaptive imaging system.
摘要:
A system may include an image sensor having a pixel array that receives light in an environment. The light received at the pixel array may be transmitted by an external device that encodes information using the wavelength, spatial patterning, temporal patterning, or other characteristics of the light. In response to receiving the light, the pixel array may generate electrical signals that are processed to decode the information in the light. The system may compare the decoded information to user preferences to determine if the information is relevant to a user. In response to determining that the information is relevant to the user, the system may display the information to the user, transmit a pulse including user preference information, or change an operating state of the image sensor.
摘要:
An imaging device may include a primary imaging sensor and a secondary imaging sensor. The secondary imaging sensor may monitor a scene being imaged by the imaging device for trigger criteria such as sudden movement, changes in the intensity of ambient light, and the presence of a particular object or person. Upon detection of relevant trigger criteria, the imaging device may activate the primary imaging sensor and capture one or more images of the scene with the primary imaging sensor. Operational parameters of the primary imaging sensor including framerate and exposure settings may be based on data from the secondary imaging sensor. The secondary imaging sensor may have a lower power consumption than the primary imaging sensor such that monitoring the scene with the secondary imaging sensor and only activating the primary imaging sensor upon detection of the relevant trigger criteria enables an efficient and adaptive imaging system.
摘要:
An imaging device may include a plurality of single-photon avalanche diode (SPAD) pixels. The SPAD pixels may be overlapped by square toroidal microlenses to direct light incident on the pixels onto photosensitive regions of the pixels. The square toroidal microlenses may be formed as first and second sets of microlenses aligned with every other SPAD pixel and may allow the square toroidal microlenses to be formed without gaps between adjacent lenses. Additionally or alternatively, a central portion of each square toroidal microlenses may be filled by a fill-in microlens. Together, the square toroidal microlenses and the fill-in microlenses may form convex microlenses over each SPAD pixel. The fill-in microlenses may be formed from material having a higher index of refraction than material that forms the square toroidal microlenses.
摘要:
An image sensor may include an array of pixels. Pixels in the array may include a photodiode that converts incident light into electrical charge and a charge storage region for storing the electrical charge before it is read out from the pixel. Pixels in the array may include a microlens formed over the photodiode that directs light onto the photodiode. Pixels in the array may include an additional array of microlenses between the microlens and the photodiode. The additional array of microlenses may direct light away from the charge storage region to prevent charge stored at the charge storage region from being affected by light that is not incident upon the photodiode. The image sensor may be a backside illuminated image sensor that operates in a global shutter mode.