Abstract:
There is provided a flow path member including a flow-path member main body which is provided with a liquid supplying path through which liquid is supplied to a head main body that ejects liquid and an attaching portion to which a liquid supplying unit that supplies liquid of the liquid supplying path is attached; and a sealing member which is provided with an insertion hole into which the attaching portion is inserted, and is interposed between the liquid supplying unit and the attaching portion, in which a convex portion is provided in any one of the inner surface of the insertion hole and the outer surface of the attaching portion, and a concave portion that fits with the convex portion is provided in the other of the inner surface of the insertion hole and the outer surface of the attaching portion.
Abstract:
A manufacturing method of a flow path member which includes a flow path between first and second members which are stacked together includes a first step of welding the first and second members to each other at a first welding portion in a state in which a pressure is applied in a stacking direction to the first and second members which are stacked to be in contact with each other, and a second step of welding the first and second members to each other in a state in which a greater pressure is applied in the stacking direction to the first and second members at a second welding portion of a different position from the first welding portion.
Abstract:
An inkjet-head includes a first flow path member in which a plurality of first flow paths are formed; and a second flow path member in which a plurality of second flow paths are formed and to which the first flow path member is bonded. The second flow paths have intra-joint-surface flow paths, respectively, which are formed by surrounding, with a first adhesive, a peripheral edge of a groove formed in the second flow path member and bonding the first flow path member thereto. A joint space is formed and includes a plurality of the intra-joint-surface flow paths due to surrounding, with a second adhesive, an outer periphery of the intra-joint-surface flow path and bonding the second flow path member and the first flow path member. At least a part of the second adhesive is formed further inside of a straight line connecting an end of one intra-joint-surface flow path on the outer side and an end of another intra-joint-surface flow path on the outer side in joined surfaces.
Abstract:
A head unit includes: a circuit substrate, a casing including a cover for defining an accommodation space that accommodates the circuit substrate, and a flow passage member of which a part is disposed in the casing, including a flow passage coupling portion. The cover has an intake port for sucking air from an outside of the cover to the accommodation space and an exhaust port for exhausting the air passing through the accommodation space, and the flow passage coupling portion is disposed outside the casing and disposed closer to the intake port than to the exhaust port.
Abstract:
An image reading apparatus includes: a reader configured to read an image of a document to be transported; a cleaning section configured to clean a reading surface of the reader, a drive source for performing a cleaning operation of the reading surface by the cleaning section; and a control unit configured to control the drive source, wherein when the control unit detects dirt on the reading surface based on data received from the reader, the control unit controls the drive source to perform the cleaning operation by the cleaning section.
Abstract:
A flow path structure which forms a flow path of liquid, includes: a light absorbing member (first substrate) having absorbing properties with respect to laser light; a light transmitting member (second substrate) which is joined to the light absorbing member and has transmitting properties with respect to the laser light; a first flow path (flow path) which is surrounded by a welding interface between the light absorbing member and the light transmitting member; and a second flow path which is formed in a flow path pipe (flow path pipe) which protrudes from a front surface opposite of the welding interface in the light transmitting member, and communicates with the first flow path, in which the flow path pipe is included in a region of the first flow path in a plan view from a direction orthogonal to the welding interface.
Abstract:
A flow path structure which forms a flow path of liquid, includes: a light absorbing member (first substrate) having absorbing properties with respect to laser light; a light transmitting member (second substrate) which is joined to the light absorbing member and has transmitting properties with respect to the laser light; a first flow path (flow path) which is surrounded by a welding interface between the light absorbing member and the light transmitting member; and a second flow path which is formed in a flow path pipe (flow path pipe) which protrudes from a front surface opposite of the welding interface in the light transmitting member, and communicates with the first flow path, in which the flow path pipe is included in a region of the first flow path in a plan view from a direction orthogonal to the welding interface.
Abstract:
A configuration includes a liquid ejecting head that ejects a liquid in an ejecting direction along a first axis, a medium supporting member that has a supporting surface supporting a medium and an opening portion facing a nozzle, a cap that is disposed in the opening portion when viewed in the ejecting direction, a coupling member that couples the medium supporting member to the cap and has a base member and a first coupling member coupling the base member to the medium supporting member and configured to extend/contract in a direction along the first axis, and a moving mechanism that causes relative movement of the coupling member with respect to the liquid ejecting head along the first axis.
Abstract:
A battery mount portion includes a recessed portion into which a portion of a battery enters, a coupling terminal provided inside the recessed portion and configured to be electrically coupled to the battery, and a covering portion that covers the coupling terminal and that constitutes a portion of the housing. In a state in which the battery is unmounted, a cover that covers an area in the battery mount portion other than the covering portion is detachably attachable, and a portion where the cover and the housing overlap each other in a depth direction of the recessed portion is located outside a path of a liquid heading towards the coupling terminal after entering the recessed portion through a portion where the cover and the covering portion oppose each other.
Abstract:
A valve includes a valve seat having a hole configured as a flow path, a valve body configured to open/close the flow path due to relative movement with respect to the valve seat, an opening member having a first surface fixed to one of the valve seat and the valve body, a second surface configured to separate away and abut the other one of the valve seat and the valve body, a third surface which intersects the first and second surfaces, and an opening penetrating the first and second surfaces, a fixing member that fixes the first surface to the one of the valve seat and the valve body, and an inclined portion, which makes an interval between the one of the valve seat and the valve body and the first surface long in a direction from the opening to the third surface.