Abstract:
A glass roll includes at least one glass film and one intermediate material one on top of the other in at least two layers onto a winding core. The glass film layers are held in place by the intermediate material layers. The glass roll is produced with a method including provision of a glass film, a winding core and a compressible intermediate material. At least one inside layer of the intermediate material is wound onto the winding core. The glass film and the intermediate material are wound onto the winding core in such a manner that the glass film is wound onto the winding core in alternating layers with the intermediate material. The intermediate material and/or the glass film is wound at a tensile stress acting in a longitudinal direction which causes a compression of the intermediate material and holds the glass film end in place on the glass roll.
Abstract:
An improved method and an improved apparatus are provided for producing a thin glass ribbon, which provide borders at the edges of the ribbon. The edges formed are of high mechanical quality and a formation of new secondary borders after the severing or at least the thickness of such secondary borders is reduced compared to the original borders. The method includes drawing the thin glass ribbon from a molten glass or from a preform, severing the borders, and cooling the resulting glass ribbon. The severing is effected at a location along the moving direction of the thin glass ribbon and at a time at which during the cooling of the thin glass ribbon the viscosity of the glass is in a range from 107 dPa·s to 1011 dPa·s, so that the edges of the thin glass ribbon newly produced by the severing of the borders are rounded off.
Abstract:
A glass ribbon in the form of a glass roll is provided that is optimized with respect to the requirements of a long service life and at the same time compact dimensions. A bending radius on the inner side of the thin glass roll is determined by performing breakage tests on samples of the glass material, statistical parameters are determined on the basis of the breakage tests, and the statistical parameters are converted into a range of bending radii which meet the requirements on service life and the most compact dimensions possible of the thin glass roll.
Abstract:
A glass article is provided that has two plane-parallel main sides, a thickness between the two plane-parallel main sides of less than 3.0 mm, an average near-surface level of damage (ONSL) on each of the two plane-parallel main sides, and an average location-thickness variation (ODS) normalized with respect to the thickness on the specified measuring area. The average near-surface level of damage is less than 2000 damages with an extension of less than 1.0 μm. The specified measuring area is 2×2 mm2. The average location-thickness variation (ODS) normalized is less than 10 nm per Rm thickness of the glass article. The average location-thickness variation (ODS) is a difference between a highest thickness and a lowest thickness within the specified measuring area.
Abstract:
A glass film has a first and a second surface which are both defined by like edges, wherein the surface of at least two edges which are located opposite one another have an average surface roughness of an maximum of 2 nanometers.
Abstract:
A method for separating a thin glass sheet, such as a glass film along a predefined cutting line provides the cutting line immediately has a temperature of greater than 250 K below the transformation point Tg of the glass of the thin sheet of glass, including the input of energy along the cutting line using a laser beam which acts such that a separation of the thin glass sheet occurs.
Abstract:
A composite includes a component and a glass or glass ceramic material. The component has a first coefficient of expansion α1 and the glass or the glass ceramic material has a second coefficient of expansion α2. The glass or the glass ceramic material has a surface with a thickness and thickness differences (TTV) within the surface, and thickness fluctuations (LTV). The composite has a residual stress in the glass or the glass ceramic material (WARP), and a geometric and material-physical degree of compatibility KG≥4.
Abstract:
A glass roll includes at least one glass film and one intermediate material one on top of the other in at least two layers onto a winding core. The glass film layers are held in place by the intermediate material layers. The glass roll is produced with a method including provision of a glass film, a winding core and a compressible intermediate material. At least one inside layer of the intermediate material is wound onto the winding core. The glass film and the intermediate material are wound onto the winding core in such a manner that the glass film is wound onto the winding core in alternating layers with the intermediate material. The intermediate material and/or the glass film is wound at a tensile stress acting in a longitudinal direction which causes a compression of the intermediate material and holds the glass film end in place on the glass roll.
Abstract:
A glass roll, as well as a device and a method for manufacturing the glass roll are provided. The glass roll includes a glass ribbon having a thickness, a length in an x-direction, and a width in a y-direction. The glass ribbon has at least one defect site at a position, as well as at least one error mark disposed on the glass ribbon, and is wound up into a glass roll.
Abstract:
A glass roll includes at least one glass film and one intermediate material one on top of the other in at least two layers onto a winding core. The glass film layers are held in place by the intermediate material layers. The glass roll is produced with a method including provision of a glass film, a winding core and a compressible intermediate material. At least one inside layer of the intermediate material is wound onto the winding core. The glass film and the intermediate material are wound onto the winding core in such a manner that the glass film is wound onto the winding core in alternating layers with the intermediate material. The intermediate material and/or the glass film is wound at a tensile stress acting in a longitudinal direction which causes a compression of the intermediate material and holds the glass film end in place on the glass roll.