Abstract:
A display controller comprises a buffer configured to store first pixel data input to a source line during a first period, and second pixel data input to the source line during a second period, subsequent to the first period, and a data generating unit configured to generate control data by comparing each of the first pixel data and the second pixel data with desired reference data, and transfer the second pixel data and the control data to a source driver driving the source line.
Abstract:
A display driving circuit comprising a level shift circuit, the level shift circuit including a level shift device configured to receive a source power applied thereto, and to generate an output signal by amplifying an input signal; a power switching circuit configured to provide any one of first to third selection powers as the source power to the level shift device, the first to third selection powers being different from one another; and a switch control circuit configured to change the first selection power to the second or third selection power based on a change of voltage levels of the first to third selection powers.
Abstract:
A method of grinding a substrate is provided. A substrate including a first main surface having a semiconductor layer formed thereon and a second main surface opposed to the first main surface is prepared. A support film is attached to the first main surface using a glue. The second main surface of the substrate is ground so as to reduce a thickness of the substrate. The support film is removed from the first main surface by applying force to the support film in a non-traverse direction.
Abstract:
A display driver integrated circuit (IC) and a display system including the same are provided. The display driver IC includes: a charge pump including a first node and a second node; a flying capacitor connected between the first node and the second node; a voltage regulator; a first switch connected between an output terminal of the voltage regulator and one of the first node and the second node; and a second switch connected between a ground and the other of the first node and the second node.
Abstract:
A display device including pixels respectively containing a plurality of subpixels, the display device comprises: a light emitting diode (LED) array including a plurality of LED cells, the plurality of LED cells provided in the plurality of subpixels, the plurality of LED cells configured to emit light having substantially the same wavelength, each of the plurality of LED cells having a first surface and a second surface; thin-film transistor (TFT) circuitry including a plurality of TFT cells, each of the plurality of TFT cells disposed on the first surface of an LED cell of the plurality of LED cells and including source and drain regions and a gate electrode disposed between the source and drain regions; a wavelength conversion pattern disposed on the second surface of an LED cell of the plurality of LED cells, the wavelength conversion pattern including a composite of a quantum dot and/or a polymer, the quantum dot configured to emit different colors of light from colors of light emitted from other quantum dots of other wavelength conversion patterns; and a light blocking wall disposed between two of the plurality of subpixels including the plurality of LED cells and between wavelength conversion patterns to separate the plurality of subpixels.
Abstract:
A semiconductor light emitting device including a floating conductive pattern is provided. The semiconductor light emitting device includes a first semiconductor layer including a recessed region and a protruding region, an active layer and a second semiconductor layer disposed on the protruding region, a contact structure disposed on the second semiconductor layer, a lower insulating pattern covering the first semiconductor layer and the contact structure, and having first and second openings, a first conductive pattern disposed on the lower insulating pattern and extending into the first opening, a second conductive pattern disposed on the lower insulating pattern and extending into the second opening, and a floating conductive pattern disposed on the lower insulating pattern. The first and second conductive patterns and the floating conductive pattern have the same thickness on the same plane.
Abstract:
A semiconductor light emitting device includes: a light emission structure in which a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer are sequentially stacked; a first electrode formed on the first conductive semiconductor layer; an insulating layer formed on the second conductive semiconductor layer and made of a transparent material; a reflection unit formed on the insulating layer and reflecting light emitted from the active layer; a second electrode formed on the reflection unit; and a transparent electrode formed on the second conductive semiconductor layer, the transparent electrode being in contact with the insulating layer and the second electrode.
Abstract:
A wafer defect test apparatus in which a defect prediction performance is improved and a simulation time is shortened is provided. The wafer defect test apparatus comprises a wafer variable generator which receives a first structural measurement data and a first process condition data of a first wafer, and a second structural measurement data and a second process condition data of a second wafer, generates a first process variable and a second process variable based on the first structural measurement data and the first process condition data, and generates a third process variable and a fourth process variable based on the second structural measurement data and the second process condition data, an abnormal wafer index generating circuit which generates a first wafer vector of the first process variable and second process variable, generates a second wafer vector of the third process variable and fourth process variable, calculates a first Euclidean distance between the first wafer vector and the second wafer vector, calculates a first Cosine distance between the first wafer vector and the second wafer vector, and generates a first abnormal wafer index of the first wafer based on a product of the first Euclidean distance and the first Cosine distance, and a prediction model generating circuit which receives a first characteristic variable which is a test result of the first wafer, and generates a wafer defect prediction model through a regression based on the first process variable, the second process variable, the first characteristic variable, and the first abnormal wafer index.
Abstract:
A semiconductor light emitting device includes an n-type semiconductor layer, an active layer and a p-type semiconductor layer formed in a first region corresponding to a partial region of an upper surface of the n-type semiconductor layer, an n-type electrode formed in a second region different from the first region on the upper surface of the n-type semiconductor layer, and having an n-type pad and first and second n-type fingers, and a p-type electrode formed on the p-type semiconductor layer, and having a p-type pad and a p-type finger, wherein the n-type semiconductor layer, the active layer, and the p-type semiconductor layer form a light emitting structure, and a region in which the n-type and p-type fingers intersect to overlap with each other is formed.