Abstract:
Provided is a backlight unit including a plurality of light emitting diodes (LEDs) that emit light; a plurality of LED modules having a printed circuit board (PCB) which supports and drives the plurality of LEDs; a plurality of optical sheets that are attached to the top surfaces of the respective LED modules; and a plurality of heat radiating pads that are attached to the rear surfaces of the respective LED modules.
Abstract:
A light emitting device includes: a substrate; a light emitting element mounted on the substrate and emitting blue light and green light; and a wavelength conversion part wavelength-converting a portion of light emitted from the light emitting element into red light, and including fluoride-based phosphors represented by Chemical Formula: AxMFy:Mn4+(2≦x≦3 and 4≦y≦7, where element A is at least one selected from a group consisting of Li, Na, K, Rb, and Cs and element M is at least one selected from a group consisting of Si, Ti, Zr, Hf, Ge and Sn) and organic or inorganic coating layers enclosing the fluoride-based phosphors.
Abstract:
Provided are a nitride semiconductor light-emitting device comprising a polycrystalline or amorphous substrate made of AlN; a plurality of dielectric patterns formed on the AlN substrate and having a stripe or lattice structure; a lateral epitaxially overgrown-nitride semiconductor layer formed on the AlN substrate having the dielectric patterns by Lateral Epitaxial Overgrowth; a first conductive nitride semiconductor layer formed on the nitride semiconductor layer; an active layer formed on the first conductive nitride semiconductor layer; and a second conductive nitride semiconductor layer formed on the active layer; and a process for producing the same.
Abstract:
A light emitting device package includes a reflective unit having a first surface and a second surface opposing the first surface and having a through hole formed in a central portion of the reflective unit to penetrate through the first and second surfaces, a light emitting device disposed in the through hole and externally exposed to one of the first and second surfaces, and an optical device disposed on the first surface of the reflective unit to cover the light emitting device. The optical device allows light generated by the light emitting device to be partially transmitted and partially reflected to be emitted externally.
Abstract:
A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
Abstract:
There is provided a light emitting module including: a printed circuit board; a plurality of light emitting diode chips disposed at a distance from one another on a conductive pattern formed on a top of the printed circuit board; and a connector formed on a bottom of the printed circuit board and electrically connected to the plurality of light emitting diode chips. The light emitting diode chips and the connector are optimally arranged to ensure that the light emitting module is suitably utilized as a high-density linear light source including a great number of light emitting diode chips and emits light outward with minimum loss.