Abstract:
A heat dissipation composite for a display device includes: a heat absorber; an electricity generator disposed on the heat absorber to convert heat from the heat absorber into electricity; and a vibrator disposed on the electricity generator to convert the electricity provided from the electricity generator into vibration.
Abstract:
A display device that includes: a display panel; a sensor that is disposed on a side of the display panel; and a discoloration layer that is disposed on an opposite side of the display panel, wherein a transmittance of the discoloration layer may vary by 5 times to 20 times, which depends on whether or not ultraviolet light is present, with respect to light having a wavelength of about 600 nm to about 630 nm.
Abstract:
A flexible display device includes a first flexible substrate that includes a signal line formed on one side of the first flexible substrate. A second flexible substrate is disposed on a second side of the first flexible substrate that is located opposite to the first side of the first flexible substrate. An opening penetrates the first flexible substrate and the second flexible substrate. A driver is attached to the second flexible substrate. A connection portion electrically connects the driver and the signal line to each other through the opening.
Abstract:
A manufacturing method of a display device includes: stacking a release layer over a first substrate; forming a conductor pattern over the release layer; forming a sacrificial layer over the conductor pattern; forming a second substrate including a polymer layer over the sacrificial layer; forming an electronic element including a conductor over the second substrate; forming a pattern corresponding to the conductor pattern in the sacrificial layer; transferring the conductor pattern from the release layer to a surface of the second substrate; and removing the first substrate, the release layer, and the sacrificial layer.
Abstract:
A display device includes a display panel including a display area and a non-display area; and an optical plate disposed on the display panel and including an optical waveguide and a body portion surrounding the optical waveguide. The optical waveguide includes an input terminal which is disposed on the display area and receives light from the display panel and an output terminal which is disposed over the non-display area and outputs the light.
Abstract:
Provided are quantum dot bar container and backlight unit. According to an aspect of the present invention, there is provided a quantum dot bar container comprising a support including a guide groove formed along a major axis thereof; a cover having a major axis, the cover being orientable to align its major axis substantially parallel to the major axis of the support, the cover including a fixing groove formed along the major axis of the cover so as to face the guide groove; and a fixing portion coupling an end of the support to an end of the cover. The cover and the support are positioned so as to form a window therebetween, when the cover is oriented so that its major axis is substantially parallel to the major axis of the support.
Abstract:
An adhesive member includes: a base layer; a first adhesive layer disposed on a first surface of the base layer; a second adhesive layer disposed on a second surface of the base layer opposite to the first surface of the base layer; a plurality of through holes passing through the base layer, the first adhesive layer, and the second adhesive layer; and a plurality of conductive members disposed in the plurality of through holes, respectively.
Abstract:
A fingerprint sensor includes: a light sensing layer including a light sensing element, wherein a sensing current flows in the light sensing element according to incident light; and a collimator layer disposed on the light sensing layer and including a light guide unit guiding light to the light sensing element. The light guide unit includes: a light-transmitting unit configured to provide light to the light sensing element; and a first light-blocking unit disposed on an inner surface of the light-transmitting unit.
Abstract:
Provided is a device configured to manufacture a conductive film including a rotating member, a first syringe, and a second syringe. The rotating member rotates about an axis extending in a first direction. The first syringe is disposed over a first portion of the rotating member, and is configured to discharge a first polymer and conductive balls. The second syringe is adjacent to the first syringe, and is configured to discharge a second polymer.
Abstract:
A light guide panel includes a top surface configured to have first and second sides extending in X- and Y-axis directions, respectively, a bottom surface configured to be disposed opposite to the top surface, and includes a base surface, and a plurality of diffusion patterns which is provided to protrude from, or to be recessed into, the base surface, and each of the plurality of diffusion patterns including a first inclined surface which defines a first inclination angle with the base surface and a second inclined surface which adjoins the first inclined surface and defines a second inclination angle with the base surface, and a first side surface and a second side surface configured to be disposed between the top surface and the bottom surface and face each other, where the first inclination angle ranges from about 1.8 degrees to about 5.7 degrees.