Abstract:
There are provided a DC-DC converter and an organic light emitting display device using the same. A DC-DC converter includes a converting module and a sensing unit. The converting module includes a switching module and a control module. The switching module has a plurality of switches, and each of the plurality of switches converts an input voltage into a first voltage and outputs the first voltage while being turned on/off in response to a corresponding pulse width modulation (PWM) signal. The control module controls a switching operation of the switching module by generating the PWM signal. The sensing unit senses driving current supplied to a load to which the first voltage is provided.
Abstract:
An organic light emitting display device includes a DC-DC converter to supply first and second voltages to one or more pixels. The DC-DC converter includes a first voltage supply to convert an input voltage to a first voltage and a second voltage supply to convert the input voltage to a second voltage. The first and second voltages are coupled to opposing ends of the one or more pixels. The first voltage supply includes a first inductor between a first input terminal and first node, a first transistor between the first node and a reference potential, a second transistor between the first node and first output terminal, a first diode between the first node and a second node, a second diode between the second node and first output terminal, and a first switch between the second node and first output terminal.
Abstract:
A driving apparatus of a display panel comprises a display panel for displaying an image according to an image signal; a DC-DC converter configured to output a voltage supplied from an external power source as a driving power source voltage for driving the display panel; a signal controller configured to generate a power supply enable signal for controlling an operation of the DC-DC converter and transfer it to the DC-DC converter; and a driving controller configured to determine an operation of the DC-DC converter according to a state of the driving power source voltage by receiving the driving power source voltage and comparing the received driving power source voltage with a pulse voltage of the power supply enable signal, and drive the DC-DC converter by adjusting the power supply enable signal in case the DC-DC converter is not operated.
Abstract:
A power controller includes an inductor coupled to an input terminal to which an input voltage is input, a first switch coupled between the inductor and a first power source voltage output terminal, a second switch coupled between the inductor and a ground, a switch controller controlling a voltage output to the first power source voltage output terminal by controlling duties of the first and second switches according to a feedback voltage input to a feedback terminal corresponding to a voltage output to the first power source voltage output terminal, and a diode coupled between the first power source voltage output terminal and the feedback terminal, and preventing a voltage of the first power source voltage output terminal from increasing higher than a breakdown voltage of the first and second switches.
Abstract:
An organic light emitting display includes a plurality of pixels coupled to scan and data lines; a scan driver configured to supply a scan signal to the pixels through the scan lines; a data driver configured to supply a data signal to the pixels through the data lines; and a power supplier configured to supply first and second voltages to the pixels and a third voltage to at least one of the scan and the data driver, wherein the power supplier includes a first converter configured to convert an input voltage into the first voltage, a second converter configured to convert the input voltage into the second voltage, a third converter configured to receive the first voltage and convert the received first voltage into the third voltage, and a shutdown switch configured to control whether or not the first voltage generated by the first converter is supplied to the pixels.
Abstract:
There are provided a DC-DC converter and an organic light emitting display device using the same. A DC-DC converter includes a switching module that converts an input voltage into a first voltage through switching operations of a plurality of switches that are turned on or off in response to a pulse width modulation (PWM) signal, and outputs the first voltage; a sensing unit that senses driving current supplied to a load to which the first voltage is provided; and a control module that controls the switching module by generating the PWM signal. The control module is configured to adaptively control the turn-on resistance of the switching module according to the sensed result of the sensing unit. Accordingly, it is possible to provide a DC-DC converter and an organic light emitting display device using the same which has optimal efficiency by adaptively operating according to a load condition.
Abstract:
A driving apparatus of a display panel comprises a display panel for displaying an image according to an image signal; a DC-DC converter configured to output a voltage supplied from an external power source as a driving power source voltage for driving the display panel; a signal controller configured to generate a power supply enable signal for controlling an operation of the DC-DC converter and transfer it to the DC-DC converter; and a driving controller configured to determine an operation of the DC-DC converter according to a state of the driving power source voltage by receiving the driving power source voltage and comparing the received driving power source voltage with a pulse voltage of the power supply enable signal, and drive the DC-DC converter by adjusting the power supply enable signal in case the DC-DC converter is not operated.
Abstract:
An organic light emitting display includes a plurality of pixels coupled to scan and data lines; a scan driver configured to supply a scan signal to the pixels through the scan lines; a data driver configured to supply a data signal to the pixels through the data lines; and a power supplier configured to supply first and second voltages to the pixels and a third voltage to at least one of the scan and the data driver, wherein the power supplier includes a first converter configured to convert an input voltage into the first voltage, a second converter configured to convert the input voltage into the second voltage, a third converter configured to receive the first voltage and convert the received first voltage into the third voltage, and a shutdown switch configured to control whether or not the first voltage generated by the first converter is supplied to the pixels.
Abstract:
Disclosed are a direct current converter and an organic light emitting display including the converter. The converter includes a power generator configured to generate a first voltage; an output terminal connected to the power generator and configured to output the first voltage; a feedback terminal connected to an external feedback wiring and configured to input a second voltage to a selector; and the selector connected to the first power generator, and configured to transfer the first voltage or the second voltage to the first power generator.
Abstract:
An organic light emitting display includes a plurality of pixels coupled to scan and data lines; a scan driver configured to supply a scan signal to the pixels through the scan lines; a data driver configured to supply a data signal to the pixels through the data lines; and a power supplier configured to supply first and second voltages to the pixels and a third voltage to at least one of the scan and the data driver, wherein the power supplier includes a first converter configured to convert an input voltage into the first voltage, a second converter configured to convert the input voltage into the second voltage, a third converter configured to receive the first voltage and convert the received first voltage into the third voltage, and a shutdown switch configured to control whether or not the first voltage generated by the first converter is supplied to the pixels.