Abstract:
An unmanned underwater vehicle of a system for the maintenance and inspection of permanent underwater facilities having a first interface configured for structurally and functionally coupling to an operational module selected on the basis of specific needs from a plurality of interchangeable operational modules featuring different characteristics, and a second interface configured for structurally and functionally coupling to a power and communication module selected on the basis of specific needs from a plurality of interchangeable power and communication modules featuring different characteristics.
Abstract:
A joining device configured to join two facing and aligned pipeline sections presents two coupling members selectively couplable to respective pipeline sections at two respective facing flanges located at the ends of respective pipeline sections; a pulling mechanism suitable to move the coupling members towards each other in abutment against the flanges and to temporarily tighten the flanges by moving the coupling members towards each other; and a tightening mechanism suitable to definitively tighten the coupling members while the pulling mechanism keeps the flanges tight.
Abstract:
A joining device configured to join two facing and aligned pipeline sections presents two coupling members selectively couplable to respective pipeline sections at two respective facing flanges located at the ends of respective pipeline sections; a pulling mechanism suitable to move the coupling members towards each other in abutment against the flanges and to temporarily tighten the flanges by moving the coupling members towards each other; and a tightening mechanism suitable to definitively tighten the coupling members while the pulling mechanism keeps the flanges tight.
Abstract:
A vessel for laying a pipeline includes a plurality of workstations disposed along a pipelaying path that includes an upstream portion away from a first end of the vessel and a plurality of ramps, includes a first ramp and a downstream second ramp disposed along the pipelaying path, in the region of the first end of the vessel. Each of the plurality of ramps has a first upstream end, a second downstream end, and an adjustable inclination. The downstream end of the first ramp is positioned inboard of the first end of the vessel and above the bottom of the vessel and the upstream end of the second ramp is positioned inboard of the first end of the vessel and above the bottom of the vessel. An external ramp assembly includes ramps that can be pivoted relative to one another and locked in a selected position.
Abstract:
A system for power and data transmission in a body of water to unmanned underwater vehicles comprises a floating surface station for generating electric energy and receiving and transmitting data; an underwater station connectable to at least one unmanned underwater vehicle; at least one submerged depth buoy; and an umbilical, which comprises a power transmission line and a data transmission line, is mechanically and electrically connected to the surface station and to the underwater station, and is mechanically coupled to the depth buoy so that the umbilical comprises a first umbilical section that is stretched between the underwater station and the depth buoy and a second umbilical section that extends loose between the depth buoy and the surface station.
Abstract:
A method for burying a pipeline in a bed of a body of water which includes: making a trench with a bottom surface in a bed of a body of water via a bed working vehicle advanced in an advancing direction; advancing a floating unit in the body of water; releasing a pipeline in the body of water via a tensioner and along a lay device tilted in an adjustable manner and constrained to the floating unit; guiding the pipeline to the bottom surface of the trench via a guide vehicle advanced on the bed of the body of water; and controlling the tensioner, the floating unit, the lay device, the bed working vehicle, and the guide vehicle to minimize stress along the pipeline.
Abstract:
A method for burying a pipeline in a bed of a body of water which includes: making a trench with a bottom surface in a bed of a body of water via a bed working vehicle advanced in an advancing direction; advancing a floating unit in the body of water; releasing a pipeline in the body of water via a tensioner and along a lay device tilted in an adjustable manner and constrained to the floating unit; guiding the pipeline to the bottom surface of the trench via a guide vehicle advanced on the bed of the body of water; and controlling the tensioner, the floating unit, the lay device, the bed working vehicle, and the guide vehicle to minimize stress along the pipeline.
Abstract:
A system for connecting two conduits in a body of water, exhibits a first tubular structure, which is coupled to a conduit that extends along a first longitudinal axis; a second tubular structure, which is coupled to another conduit that extends along a second longitudinal axis and comprises a tubular member, and a sleeve, which is telescopically coupled to the tubular member, and faces the first tubular structure; and an actuating assembly, which comprises a bidirectional translating device configured to selectively displace the sleeve forward and backward to selectively couple and uncouple an end portion of the sleeve and the first tubular structure.
Abstract:
A method of securing a pipeline to the bed of a body of water includes moving an underwater vehicle selectively, on the bed of the body of water, along the pipeline; transporting a plurality of fastening devices on the underwater vehicle; and driving each fastening device partly into the bed of the body of water, close to the pipeline, by a handling device mounted on the underwater vehicle, to confine the pipeline between the bed of the body of water and the fastening device.
Abstract:
An apparatus for joining elongated elements in a body of water has a frame; a strap feeding device; two arms movable with respect to the frame and configured to guide a strap around the elongated elements; a clamping device, configured to retain an end portion of the strap; a driving device configured to advance and tighten the strap around the elongated elements; a junction device, configured to join two overlapping portions of the strap so as to close the strap around the elongated elements; and a cutting device configured to separate the strap upstream of the joined portion.