Method and apparatus for hierarchical wafer quality predictive modeling
    1.
    发明授权
    Method and apparatus for hierarchical wafer quality predictive modeling 有权
    分层晶圆质量预测模型的方法和装置

    公开(公告)号:US08732627B2

    公开(公告)日:2014-05-20

    申请号:US13526152

    申请日:2012-06-18

    IPC分类号: G06F17/50

    摘要: A method for performing enhanced wafer quality prediction in a semiconductor manufacturing process includes the steps of: obtaining data including at least one of tensor format wafer processing conditions, historical wafer quality measurements and prior knowledge relating to at least one of the semiconductor manufacturing process and wafer quality; building a hierarchical prediction model including at least the tensor format wafer processing conditions; and predicting wafer quality for a newly fabricated wafer based at least on the hierarchical prediction model and corresponding tensor format wafer processing conditions.

    摘要翻译: 一种用于在半导体制造过程中执行增强的晶片质量预测的方法包括以下步骤:获得包括张量格式晶片处理条件,历史晶片质量测量和与半导体制造工艺和晶片中的至少一个相关的先前知识中的至少一个的数据 质量; 构建包括至少张量格式晶片处理条件的分级预测模型; 并且至少基于分层预测模型和对应的张量格式晶片处理条件来预测新制造的晶片的晶片质量。

    Method and Apparatus for Hierarchical Wafer Quality Predictive Modeling
    2.
    发明申请
    Method and Apparatus for Hierarchical Wafer Quality Predictive Modeling 有权
    分层晶片质量预测建模方法与装置

    公开(公告)号:US20130339919A1

    公开(公告)日:2013-12-19

    申请号:US13526152

    申请日:2012-06-18

    IPC分类号: G06F17/50

    摘要: A method for performing enhanced wafer quality prediction in a semiconductor manufacturing process includes the steps of: obtaining data including at least one of tensor format wafer processing conditions, historical wafer quality measurements and prior knowledge relating to at least one of the semiconductor manufacturing process and wafer quality; building a hierarchical prediction model including at least the tensor format wafer processing conditions; and predicting wafer quality for a newly fabricated wafer based at least on the hierarchical prediction model and corresponding tensor format wafer processing conditions.

    摘要翻译: 一种用于在半导体制造过程中执行增强的晶片质量预测的方法包括以下步骤:获得包括张量格式晶片处理条件,历史晶片质量测量和与半导体制造工艺和晶片中的至少一个相关的先前知识中的至少一个的数据 质量; 构建包括至少张量格式晶片处理条件的分级预测模型; 并且至少基于分层预测模型和对应的张量格式晶片处理条件来预测新制造的晶片的晶片质量。

    Method and Apparatus for Hierarchical Wafer Quality Predictive Modeling
    3.
    发明申请
    Method and Apparatus for Hierarchical Wafer Quality Predictive Modeling 审中-公开
    分层晶片质量预测建模方法与装置

    公开(公告)号:US20130338808A1

    公开(公告)日:2013-12-19

    申请号:US13559500

    申请日:2012-07-26

    IPC分类号: G06F19/00

    摘要: An apparatus for performing enhanced wafer quality prediction in a semiconductor manufacturing process includes memory, for storing historical data relating to the semiconductor manufacturing process, and at least one processor in operative communication with the memory. The processor is operative: to obtain data including tensor format wafer processing conditions, historical wafer quality measurements and/or prior knowledge relating to at least one of the semiconductor manufacturing process and wafer quality; to build a hierarchical prediction model including at least the tensor format wafer processing conditions; and to predict wafer quality for a newly fabricated wafer based at least on the hierarchical prediction model and corresponding tensor format wafer processing conditions.

    摘要翻译: 用于在半导体制造工艺中执行增强的晶片质量预测的装置包括用于存储与半导体制造过程有关的历史数据的存储器以及与存储器可操作地通信的至少一个处理器。 处理器可操作:获得包括张量格式晶片处理条件,历史晶片质量测量和/或与半导体制造工艺和晶片质量中的至少一个相关的先前知识的数据; 构建至少包括张量格式晶片处理条件的分层预测模型; 并且至少基于分级预测模型和对应的张量格式晶片处理条件来预测新制造的晶片的晶片质量。

    FINDING A TOP-K DIVERSIFIED RANKING LIST ON GRAPHS
    6.
    发明申请
    FINDING A TOP-K DIVERSIFIED RANKING LIST ON GRAPHS 有权
    找到一个顶级的K多样化排名列表

    公开(公告)号:US20130046768A1

    公开(公告)日:2013-02-21

    申请号:US13213856

    申请日:2011-08-19

    IPC分类号: G06F17/30

    摘要: A method, system and computer program product for finding a diversified ranking list for a given query. In one embodiment, a multitude of date items responsive to the query are identified, a marginal score is established for each data item; and a set, or ranking list, of the data items is formed based on these scores. This ranking list is formed by forming an initial set, and one or more data items are added to the ranking list based on the marginal scores of the data items. In one embodiment, each of the data items has a measured relevance and a measured diversity value, and the marginal scores for the data items are based on the measured relevance and the measured diversity values of the data items.

    摘要翻译: 一种用于查找给定查询的多样化排名列表的方法,系统和计算机程序产品。 在一个实施例中,识别响应于查询的多个日期项目,为每个数据项目建立边际分数; 并且基于这些分数形成数据项的集合或排名列表。 该排序列表通过形成初始集合而形成,并且基于数据项目的边际分数将一个或多个数据项目添加到排名列表。 在一个实施例中,每个数据项具有测量的相关性和测量的分集值,并且数据项的边际分数基于所测量的相关性和所测量的数据项的分集值。

    Finding a top-K diversified ranking list on graphs
    7.
    发明授权
    Finding a top-K diversified ranking list on graphs 有权
    在图表上找到顶级K多样化排名列表

    公开(公告)号:US09009147B2

    公开(公告)日:2015-04-14

    申请号:US13213856

    申请日:2011-08-19

    IPC分类号: G06F17/30 G06F7/00

    摘要: A method, system and computer program product for finding a diversified ranking list for a given query. In one embodiment, a multitude of date items responsive to the query are identified, a marginal score is established for each data item; and a set, or ranking list, of the data items is formed based on these scores. This ranking list is formed by forming an initial set, and one or more data items are added to the ranking list based on the marginal scores of the data items. In one embodiment, each of the data items has a measured relevance and a measured diversity value, and the marginal scores for the data items are based on the measured relevance and the measured diversity values of the data items.

    摘要翻译: 一种用于查找给定查询的多样化排名列表的方法,系统和计算机程序产品。 在一个实施例中,识别响应于查询的多个日期项目,为每个数据项目建立边际分数; 并且基于这些分数形成数据项的集合或排名列表。 该排序列表通过形成初始集合而形成,并且基于数据项目的边际分数将一个或多个数据项目添加到排名列表。 在一个实施例中,每个数据项具有测量的相关性和测量的分集值,并且数据项的边际分数基于所测量的相关性和所测量的数据项的分集值。

    Graph-based transfer learning
    9.
    发明授权
    Graph-based transfer learning 有权
    基于图形的传输学习

    公开(公告)号:US09477929B2

    公开(公告)日:2016-10-25

    申请号:US13619142

    申请日:2012-09-14

    IPC分类号: G06F5/00 G06N5/00 G06N99/00

    CPC分类号: G06N99/005

    摘要: Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.

    摘要翻译: 转移学习是利用来自某些领域的标记示例的信息来预测另一个域中的示例的标签的任务。 发现情绪预测,图像分类和网络入侵检测等丰富的实际应用。 基于图形的传输学习框架通过示例特征示例三方图将标签信息从源域传播到目标域,并通过示例性的二分图更加强调来自目标域的标记示例。 迭代算法使框架可扩展到大规模应用程序。 该框架通过原理方式的共同特征将标签信息传播到与源域无关的特征和目标域中的未标记示例。

    Graph-based framework for multi-task multi-view learning
    10.
    发明授权
    Graph-based framework for multi-task multi-view learning 有权
    基于图形的多任务多视图学习框架

    公开(公告)号:US08990128B2

    公开(公告)日:2015-03-24

    申请号:US13488885

    申请日:2012-06-05

    IPC分类号: G06F15/18 G06K9/62

    CPC分类号: G06K9/628

    摘要: A system and method a Multi-Task Multi-View (M2TV) learning problem. The method uses the label information from related tasks to make up for the lack of labeled data in a single task. The method further uses the consistency among different views to improve the performance. It is tailored for the above complicated dual heterogeneous problems where multiple related tasks have both shared and task-specific views (features), since it makes full use of the available information.

    摘要翻译: 多任务多视图(M2TV)学习问题的系统和方法。 该方法使用相关任务的标签信息来弥补单个任务中缺少标记数据。 该方法进一步使用不同视图之间的一致性来提高性能。 它针对上述复杂的双重异构问题,其中多个相关任务具有共享和任务特定的视图(特征),因为它充分利用了可用的信息。