摘要:
A method for performing enhanced wafer quality prediction in a semiconductor manufacturing process includes the steps of: obtaining data including at least one of tensor format wafer processing conditions, historical wafer quality measurements and prior knowledge relating to at least one of the semiconductor manufacturing process and wafer quality; building a hierarchical prediction model including at least the tensor format wafer processing conditions; and predicting wafer quality for a newly fabricated wafer based at least on the hierarchical prediction model and corresponding tensor format wafer processing conditions.
摘要:
A method for performing enhanced wafer quality prediction in a semiconductor manufacturing process includes the steps of: obtaining data including at least one of tensor format wafer processing conditions, historical wafer quality measurements and prior knowledge relating to at least one of the semiconductor manufacturing process and wafer quality; building a hierarchical prediction model including at least the tensor format wafer processing conditions; and predicting wafer quality for a newly fabricated wafer based at least on the hierarchical prediction model and corresponding tensor format wafer processing conditions.
摘要:
An apparatus for performing enhanced wafer quality prediction in a semiconductor manufacturing process includes memory, for storing historical data relating to the semiconductor manufacturing process, and at least one processor in operative communication with the memory. The processor is operative: to obtain data including tensor format wafer processing conditions, historical wafer quality measurements and/or prior knowledge relating to at least one of the semiconductor manufacturing process and wafer quality; to build a hierarchical prediction model including at least the tensor format wafer processing conditions; and to predict wafer quality for a newly fabricated wafer based at least on the hierarchical prediction model and corresponding tensor format wafer processing conditions.
摘要:
A method for run-to-run control and sampling optimization in a semiconductor manufacturing process includes the steps of: determining a process output and corresponding metrology error associated with an actual metrology for a current processing run in the semiconductor manufacturing process; determining a predicted process output and corresponding prediction error associated with a virtual metrology for the current processing run; and controlling at least one parameter corresponding to a subsequent processing run as a function of the metrology error and the prediction error.
摘要:
A method for run-to-run control and sampling optimization in a semiconductor manufacturing process includes the steps of: determining a process output and corresponding metrology error associated with an actual metrology for a current processing run in the semiconductor manufacturing process; determining a predicted process output and corresponding prediction error associated with a virtual metrology for the current processing run; and controlling at least one parameter corresponding to a subsequent processing run as a function of the metrology error and the prediction error.
摘要:
A method, system and computer program product for finding a diversified ranking list for a given query. In one embodiment, a multitude of date items responsive to the query are identified, a marginal score is established for each data item; and a set, or ranking list, of the data items is formed based on these scores. This ranking list is formed by forming an initial set, and one or more data items are added to the ranking list based on the marginal scores of the data items. In one embodiment, each of the data items has a measured relevance and a measured diversity value, and the marginal scores for the data items are based on the measured relevance and the measured diversity values of the data items.
摘要:
A method, system and computer program product for finding a diversified ranking list for a given query. In one embodiment, a multitude of date items responsive to the query are identified, a marginal score is established for each data item; and a set, or ranking list, of the data items is formed based on these scores. This ranking list is formed by forming an initial set, and one or more data items are added to the ranking list based on the marginal scores of the data items. In one embodiment, each of the data items has a measured relevance and a measured diversity value, and the marginal scores for the data items are based on the measured relevance and the measured diversity values of the data items.
摘要:
A first mapping function automatically maps a plurality of documents each with a concept of ontology to create a documents-to-ontology distribution. An ontology-to-class distribution that maps concepts in the ontology to class labels, respectively, is received, and a classifier is generated that labels a selected document with an associated class identified based on the documents-to-ontology distribution and the ontology-to-class distribution.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.
摘要:
A system and method a Multi-Task Multi-View (M2TV) learning problem. The method uses the label information from related tasks to make up for the lack of labeled data in a single task. The method further uses the consistency among different views to improve the performance. It is tailored for the above complicated dual heterogeneous problems where multiple related tasks have both shared and task-specific views (features), since it makes full use of the available information.