Abstract:
The present invention provides methods and compositions useful for conditioning and removing solid deposits that have formed on or otherwise accumulated within one or more components including, for example, scale formed within a steam generating system. The aqueous cleaning compositions incorporate one or more quaternary ammonium hydroxides characterized by pKa values no less than about 13.5. These quaternary ammonium hydroxides may be used alone or in combination with one or more additives including, for example, chelating agents, reducing or oxidizing agents, pH adjustment agents, surfactants, corrosion inhibitors, complexing agents, dispersants and combinations thereof.
Abstract:
Disclosed are methods and apparatus for cleaning heat exchangers and similar vessels by introducing chemical cleaning solutions and/or solvents while maintaining a target temperature range by direct steam injection into the cleaning solution. The steam may be injected directly into the heat exchanger or into a temporary side stream loop for recirculating the cleaning solution or admixed with fluids being injected to the heat exchanger. The disclosed methods are suitable for removing metallic oxides from a heat exchanger under chemically reducing conditions or metallic species such as copper under chemically oxidizing conditions. In order to further enhance the heat transfer efficiency of heating cleaning solvents by direct steam injection, mixing on the secondary side of the heat exchanger can be enhanced by gas sparging or by transferring liquid between heat exchangers when more than one heat exchanger is being cleaned at the same time.
Abstract:
Disclosed are methods and apparatus for cleaning heat exchangers and similar vessels by introducing chemical cleaning solutions and/or solvents while maintaining a target temperature range by direct steam injection into the cleaning solution. The steam may be injected directly into the heat exchanger or into a temporary side stream loop for recirculating the cleaning solution or admixed with fluids being injected to the heat exchanger. The disclosed methods are suitable for removing metallic oxides from a heat exchanger under chemically reducing conditions or metallic species such as copper under chemically oxidizing conditions. In order to further enhance the heat transfer efficiency of heating cleaning solvents by direct steam injection, mixing on the secondary side of the heat exchanger can be enhanced by gas sparging or by transferring liquid between heat exchangers when more than one heat exchanger is being cleaned at the same time.
Abstract:
Provided area cleaning apparatus and an associated method of using the disclosed apparatus wherein the apparatus utilizes one or more nozzles configured to provide a coherent stream of one or more cleaning fluids for removing accumulated fine particulate matter, sludge, from surfaces. The nozzles may be sized, arranged and configured to provide coherent streams that maintain the initial stream diameter for a substantial portion of the maximum dimension of the space being cleaned. The apparatus and method are expected to be particularly useful in the cleaning of heat exchangers incorporating a plurality of substantially vertical and narrowly spaced tubes by directing cleansing streams along a plurality of intertube spaces.
Abstract:
A method is provided for evaluating simultaneously the effects of multiple, interdependent heat-exchanger degradation modes for a heat exchanger of a power plant in the context of a series of alternative heat-exchanger remediation strategies. The method includes calculating time-varying predicted future progressions of heat exchanger performance metrics for a plurality of alternative heat-exchanger remediation strategies, and calculating time-varying predicted future progressions of financial metrics describing the accumulated financial benefit of each of the strategies. The calculations may be provided in probabilistic terms. A strategy may then be chosen based, at least in part, on the calculated results.
Abstract:
A method for depositing divalent metal compounds on the surface of a nuclear power plant component, the component being a nickel-based or austenitic stainless steel alloy includes: providing within the component an aqueous treatment solution containing at least one soluble metal-containing compound such as a zinc salt and at least one source of oxygen; allowing the treatment solution to remain in the component until the compound is deposited on the wetted surface of the component; and, removing the aqueous solution after exposure. The treatment may be applied more than once, using more than one divalent metal compound, and the surface may further be exposed to a solution containing a noble metal species and a reducing agent. The treatment temperature is preferably below 100° C.