Abstract:
Disclosed is a system for determination of attitude for a projectile in flight. The system includes at least one antenna mounted on the projectile. Each antenna is configured to receive Global Positioning System (GPS) signals. Further, the system includes a signal receiving unit communicably coupled to the each antenna to receive the GPS signals and to ascertain the earth referenced velocity vector. The system also includes a plurality of magnetometers for ascertaining a projectile referenced earth's magnetic field vector. Moreover, the system includes a processing unit. The processing unit is configured to utilize a known projectile referenced velocity vector and a stored prediction of the earth referenced earth's magnetic field vector along with the measured earth referenced velocity vector and the measured projectile referenced earth's magnetic field vector to determine the attitude of the projectile. Further disclosed is a method for determination of attitude for a projectile in flight.
Abstract:
A system is provided for semi-active laser designation, the system comprising: a guidance and control system having a plurality of wings disposed at an aerodynamically advantageous angle; a plurality of linear sensor arrays configured to measure location of a target, each the sensor array being disposed on a wing of the plurality of wings; and each the linear sensor array providing independent data to the guidance and control system as to the location of the target.
Abstract:
The system includes a mobile vessel having a body axis and a steering mechanism. A three-axis gyroscope is mounted within the vessel. A three-axis magnetometer is mounted within the vessel. A programmable device communicates with the three-axis gyroscope, the three-axis magnetometer, and the steering mechanism. The three-axis gyroscope may include three single axis gyroscopes.
Abstract:
A system and method for guiding a projectile is presented. A nozzle system includes a boom assembly body that can be attached to a rear end of a projectile. A gas tank in the boom assembly contains pressurized gas. Fins are attached to the boom assembly body to guide the projectile. A valve lets a pulse of gas out of the gas tank. A nozzle expels the pulse of gas to control an angle of attack and lift of the projectile to guide the projectile to a target.
Abstract:
A system is provided for the remote control of a spinning projectile, the system comprising: a polarized radiation source emitting polarized radiation wherein commands are encoded; a projectile round; a polarized radiation receiver disposed on the projectile round and configured to receive the polarized radiation; and a projectile steering mechanism, the mechanism directing movement of the projectile according to the commands communicated by means of rotation of polarization of the polarized radiation source.