Abstract:
Method for predicting a rotational speed (n) of a drive shaft (16) in an internal combustion engine (13), wherein a past rotational speed (n) of the drive shaft (16) is determined, characterized in that in order to determine a theoretical rotational speed (nT1, nT2) of the drive shaft (16) at a future point in time (tT1, tT2), the change in the rotational speed (n) between two past events (P01, P11; P02, P12) occurring at different times is used, one rotational speed (n01, n11; n02, n12) and one point in time (t01, t11; t02, t12) being assigned to each event, wherein one point in time (t01, t02) is an earlier point in time and the other is a later point in time (t02, t12), which therefore lies before the predicted point in time (tT1, tT2), wherein a gradient (m) is determined for a period between the two events (P01, P11; P02, P12) and is used as the basis for deducing a theoretical future rotational speed (nT1, nT2) at the future point in time (tT1, tT2), such that in order to determine the theoretical rotational speed (nT1, nT2) of the drive shaft (16) at the future point in time (tT1, tT2), the determined gradient (m) is used to determine the theoretical rotational speed (nT1, nT2) at the future point in time (tT1, tT2), on the basis of the later point in time (t02, t12), thus determining whether the theoretical rotational speed (nT1, nT2) actually occurred before the future point in time (tT1, tT2) or not until afterwards.
Abstract:
The invention relates to a method for meshing a starter pinion (19) of a starting device (16) into a ring gear (13) of an internal combustion engine (10). The internal combustion engine (10) has a driveshaft (22), and the starting device (16) has a starter motor (25), said driveshaft (22) having a variable rotational speed (n). The internal combustion engine (10) is switched off in a method step (S1), and the starter pinion (19), which is not being rotationally driven by the starter motor (25), is then advanced in the direction of the ring gear (13) by a toe-in actuator (28) by means of a toe-in force (FV) in a method step (S2) until the starter pinion contacts the ring gear. A meshing force (FE) is then exerted onto the starter pinion (19) in a controlled manner in an additional method step (S3) in order to mesh the starter pinion (19) into a tooth gap (34) of the ring gear (13).
Abstract:
The invention relates to a method for meshing a starter pinion (19) of a starting device (16) into a ring gear (13) of an internal combustion engine (10). The internal combustion engine (10) has a driveshaft (22), and the starting device (16) has a starter motor (25), said driveshaft (22) having a variable rotational speed (n). The internal combustion engine (10) is switched off in a method step (S1), and the starter pinion (19), which is not being rotationally driven by the starter motor (25), is then advanced in the direction of the ring gear (13) by a toe-in actuator (28) by means of a toe-in force (FV) in a method step (S2) until the starter pinion contacts the ring gear. A meshing force (FE) is then exerted onto the starter pinion (19) in a controlled manner in an additional method step (S3) in order to mesh the starter pinion (19) into a tooth gap (34) of the ring gear (13).
Abstract:
Method for predicting a rotational speed (n) of a drive shaft (16) in an internal combustion engine (13), wherein a past rotational speed (n) of the drive shaft (16) is determined, characterised in that in order to determine a theoretical rotational speed (nT1, nT2) of the drive shaft (16) at a future point in time (tT1, tT2), the change in the rotational speed (n) between two past events (P01, P11; P02, P12) occurring at different times is used, one rotational speed (n01, n11; n02, n12) and one point in time (t01, t11; t02, t12) being assigned to each event, wherein one point in time (t01, t02) is an earlier point in time and the other is a later point in time (t02, t12), which therefore lies before the predicted point in time (tT1, tT2), wherein a gradient (m) is determined for a period between the two events (P01, P11; P02, P12) and is used as the basis for deducing a theoretical future rotational speed (nT1, nT2) at the future point in time (tT1, tT2), such that in order to determine the theoretical rotational speed (nT1, nT2) of the drive shaft (16) at the future point in time (tT1, tT2), the determined gradient (m) is used to determine the theoretical rotational speed (nT1, nT2) at the future point in time (tT1, tT2), on the basis of the later point in time (t02, t12), thus determining whether the theoretical rotational speed (nT1, nT2) actually occurred before the future point in time (tT1, tT2) or not until afterwards.
Abstract:
A method for actuating an element (22) in the air supply tract (29) of an internal combustion engine (19), characterized in that the element (22) is actuated such that it opens the air supply tract (29) before the pinion (10) engages into the toothed ring (16) of the internal combustion engine (19).
Abstract:
A method for actuating an element (22) in the air supply tract (29) of an internal combustion engine (19), characterized in that the element (22) is actuated such that it opens the air supply tract (29) before the pinion (10) engages into the toothed ring (16) of the internal combustion engine (19).