Abstract:
A flexible structural restraint layer for use with an inflatable modular structure, having a fore and aft assembly separated by a longeron and an inflatable bladder, is disclosed and claimed. The restraint layer is comprised of two circumferential strap assemblies, each attachedly fastened at opposing ends of a radial strap assembly. There are a plurality of axial straps that are secured in place to the circumferential strap assemblies and the radial strap assembly. The restraint layer surrounds the bladder and the ends of the axial straps are secured in place at the fore and aft end of the modular structure. When the bladder is inflated, the structural restraint layer distributes the load created by the inflated bladder.
Abstract:
A method for making an opening in the bladder of an inflatable modular structure. The structure has a core comprised of a fore and aft assembly separated by a longeron. There is an inflatable bladder and a restraint layer that are secured to the core. The restraint layer is comprised of two circumferential strap assemblies; each attachedly fastened at opposing ends of a radial strap assembly, and has an opening for a window. The restraint layer fits over the bladder. The bladder is inflated and the restraint layer is used along with a window template to locate the position of the window on the bladder. The bladder is deflated, the template is removed, and the identified portion of the bladder is cut away. The method may then be repeated.
Abstract:
A soccer net that is stored in a folded condition under lock and key in a compartment at its game location on the playing field and thus effectively secured against weather deterioration and vandalism, and when unlocked the disassembly of the components of the compartment from about the soccer net are in paths of movement which stretch and position the net into its goal tending playing condition.
Abstract:
A method for assembling and landing a habitable module on an extraterrestrial mass is claimed. At least one inflatable module and a second module are placed into orbit about an extraterrestrial mass. Connecting nodes, propulsion busses, and landing pads are also placed into orbit. A habitable structure is constructed from the modules, busses, pads, and nodes. The structure can be robotically constructed. The habitable structure is then landed onto the surface of the extraterrestrial mass. The landing can be remotely controlled and the modules can be non-occupied.
Abstract:
A radiation shield for use with a manned spacecraft is claimed. The shield has a container that is substantially filled with a substantially radiation absorbing material. The container has attachment members that cooperate with corresponding attachment members on the inner surface of a spacecraft. The radiation absorbing material provides a measure of protection to crewmembers and equipment against particle radiation that is present in space.
Abstract:
A cover for an inflatable modular structure is claimed. A plurality of covers fit on the core of an inflatable module. An inflatable shell is attached to the core enclosing the covers and the core. In the pre-deployed configuration, the inflatable shell is folded over the covers and the covers provide a measure of protection for the shell. In the deployed state, the inflatable shell is filled with air and expands to its deployed configuration. The covers can be removed from core and attached to the inside of the shell. The covers then function as a platform to secure items in place.
Abstract:
In a gaming environment, a method of periodically downloading dynamically generated executable modules at random intervals that perform system configuration integrity checks in a secure and verifiable manner is disclosed. The dynamically generated executable modules are created on a server machine and are themselves signed using industry standard PKI techniques, and contain randomly chosen subset from a repertoire of proven hashing and encryption algorithms that are executed on the system to be checked to create a unique signature of the state of that system. The dynamically generated executable module returns the signature to the server machine from which it was downloaded and deletes itself from the system being checked. The next time such an executable module is downloaded, it will contain a different randomly chosen subset of hashing and encryption algorithms. The server that is performing the system configuration integrity check maintains a database of expected system configurations and performs the same subset of hashing and encryption algorithms as contained in the dynamically generated executable module. The result returned by the downloaded executable module is compared to that computed locally, and an error condition is raised if they do not match.
Abstract:
An orbital debris shield for protecting the hull of a spacecraft is claimed. The shield is comprised of a number of flexible and releasably attached gores that substantially cover the hull. Interleafed between layers of the gores are layers of a spacing material. As debris collides with the gores, the material is shocked and breaks up to some degree. As the shocked debris disperses through a layer of the gore, the spacing material interacts with the debris. After dispersing through a number of layers of the gores and the spacing material, the debris transfers a significant portion of kinetic energy and the probability of the remaining particles piercing the hull is significantly decreased.
Abstract:
An orbital debris shield for protecting the hull of a spacecraft is claimed. The shield is comprised of a number of flexible and releasably attached gores that substantially cover the hull. Interleafed between layers of the gores are layers of a spacing material. As debris collides with the gores, the material is shocked and breaks up to some degree. As the shocked debris disperses through a layer of the gore, the spacing material interacts with the debris. After dispersing through a number of layers of the gores and the spacing material, the debris transfers a significant portion of kinetic energy and the probability of the remaining particles piercing the hull is significantly decreased.
Abstract:
A method for assembling and landing a habitable module on an extraterrestrial mass is claimed. At least one inflatable module and a second module are placed into orbit about an extraterrestrial mass. Connecting nodes, propulsion busses, and landing pads are also placed into orbit. A habitable structure is constructed from the modules, busses, pads, and nodes. The structure can be robotically constructed. The habitable structure is then landed onto the surface of the extraterrestrial mass. The landing can be remotely controlled and the modules can be non-occupied.