Abstract:
The present invention provides a method and apparatus for packaging high frequency electrical and/or electro-optical components. The present invention provides a package which may be surface mounted on a board with other electrical components. The shielding provided by the package minimizes electromagnetic interference with other electrical components on the board. The package includes a controlled impedance I/O interface for coupling with the electrical and/or electro-optical component(s) in the package. The package interface may also include a differential I/O capability to further control electromagnetic fields generated at the interface. Additionally, the package may include an optical link provided by one or more optical fibers extending from the package.
Abstract:
A nonlinear impedance transformer comprising a plurality of scaled L-C sections. The first section has its inductance and capacitance values selected to establish a characteristic impedance approximately equal to the output impedance of the local oscillator. The last section has its inductance and capacitance values selected to establish an output impedance which substantially matches the input impedance of whatever device to which the nonlinear impedance transformer is coupled. The impedance of each section is scaled logarithmically between the values of the input and output impedances. An FET driver can be integrated on the same substrate as integrated versions of the nonlinear impedance transformer. In such a case, the input impedance of the first section is set to the output impedance of the FET, i.e., about 10 ohms.
Abstract:
A floating sampler and directional bridge for use in characterizing the impedance of an integrated device under test from D.C. up to frequencies above 100 GHz. The directional bridge has the structure of a Wheatstone bridge with resistor values selected such that when the input impedance of the device under test matches the output impedance of the source, no voltage develops across two nodes of the bridge. When no impedance match exists, a floating diode/capacitor sampler comprised of two diode/capacitor pairs driven by local oscillator strobe pulses samples the voltage difference between the two nodes of the bridge and outputs an IF signal proportional to the difference. Another pair of diode/capacitor samplers outputs an IF signal proportional to the amplitude of the RF excitation waveform.
Abstract:
A high bandwidth RF sampler using equivalent time sampling comprising an RF coplanar waveguide integrated with sampling diodes on a gallium arsenide substrate. A monolithic, integrated coplanar strip nonlinear transmission line is integrated on the same substrate to receive sample pulses. These pulses are reshaped by the nonlinear transmission line to have a very fast edge. This edge is differentiated by a shunt inductance of a short circuit termination of a slot line portion of the RF signal coplanar waveguide. The resulting delta function sample pulses cause the sample diodes and integrated capacitors to develop an intermediate output frequency which is a replica of the RF signal at a lower frequency and no voltage conversion loss. RF signals of up to 300 Ghz can be sampled using this circuit.
Abstract:
A high bandwidth RF sampler using equivalent time sampling comprising an RF coplanar waveguide integrated with sampling diodes on a gallium arsenide substrate. A monolithic, integrated nonlinear transmission line is integrated on the same substrate to receive sample pulses. These pulses are reshaped by the nonlinear transmission line to have a very fast edge. This edge is differentiated by a shunt inductance of a short circuit termination of a slot line portion of the RF signal coplanar waveguide. The resulting delta function sample pulses cause the sample diodes and integrated capacitors to develop an intermediate output frequency which is a replica of the RF signal at a lower frequency and no voltage conversion loss. RF signals of up to 300 Ghz can be sampled using this circuit.
Abstract:
An electromechanical switching device employs a first nanoscale pillar shuttling charge between opposed charged electrodes. Motion of the first pillar is coupled to a second set of pillars providing controlled charge transfer between a second isolated set of electrodes. Standard logic elements may be constructed using this switching device.
Abstract:
An optical receiver may include a photodector defined on a multilayer semiconductor structure. A first electrode may be formed by at least two substantially concentric conductive rings electrically coupled to one another and to a portion of a first layer of the multilayer semiconductor structure. A second electrode may be coupled to a second layer of the multilayer semiconductor structure and configured to transfer current generated by the photodetector in response to optical emissions. A method of fabricating such an optical receiver is also disclosed.
Abstract:
An integrated coplanar strip nonlinear transmission line comprising a substrate of gallium arsenide upon which a heavily doped buried layer and a lightly doped surface layer of epitaxially grown gallium arsenide are grown. Two parallel conductors are integThis work was funded by the United States Government's Office of Naval Research under contract No. N99914-85-K-0381. The United States Government has a paid up license in this technology.
Abstract:
The present invention provides a velocity matched distributed photodetector/modulator (VMDP) for converting between an optical signal and an electrical signal. The converter has twice the theoretical efficiency of any prior art device. The converter wave-guide core is of uniform cross-sectional thickness and composition along the optical path, which makes it easy to fabricate. The converter includes a passive optical waveguide and a plurality of photodiodes. The photodiodes optically couple in series with the passive optical waveguide and electrically couple in parallel with one another to convey the electrical signal there between. The photodiodes exhibit impedance mismatches that generate reflections of the electrical signal, which contribute to a cancellation of reverse traveling portions of the electrical signal. The passive optical waveguide may be tuned to a band gap at which it exhibits transparency to a characteristic wavelength of the optical signal at a field strength less than a first electrical field strength and absorption of the optical signal at the field strength greater than the first field strength. The photodiodes are electrically biased to generate within the passive optical waveguide localized electric fields. The field strength of these fields is greater than the first electrical field strength, to optically couple the photodiodes with the passive optical waveguide.
Abstract:
Described embodiments provide a method and apparatus for transmission of optical communications. An embodiment provides an optical transmitter which includes a control circuit to enhance the stability of output power levels, a modulator circuit with precise impedance matching for high frequency performance, and an optical coupling mechanism that relaxes the alignment tolerances between the laser and the fiber and decreases the sensitivity of the gain medium to feedback from devices coupled to the fiber. These features allow the transmitter to deliver an optical output beam which can be modulated over a wide range of frequencies, duty cycles and amplitudes with very precise definition of the rising and falling edges of the waveform. In combination these features result in an optical transmitter that may be fabricated with relatively low cost and a reduced form factor when compared with prior art optical transmitters.