Abstract:
A substrate fabrication system is provided which includes a buffer station located inline between a front docking port and a loadlock chamber, the buffer station being operatively joined with a front handling chamber. Preferred embodiments employ a buffer station having a rack with reduced pitch, or relative spacing between shelves. Additional embodiments provide variable pitch end effectors as part of the disclosed fabrication system. Methods of fabricating wafers by quickly transferring them to purgeable buffer stations upon wafers arriving at a docking port are also provided.
Abstract:
This invention relates to an apparatus and a method for cooling a semiconductor wafer while it is being transferred from one station to another. More particularly, the invention relates to an active cooling system in the end effecter of a robot used for moving a semiconductor wafer from one process station to another.
Abstract:
A slit valve for a semiconductor processing apparatus, for fluidly sealing a passage connecting two chambers of the apparatus, such as a substrate reaction chamber and a region outside the reaction chamber. The slit valve comprises an actuator plate movable within a slot in one wall of the passage, the actuator plate and the slot oriented generally transverse to the passage. The actuator plate has a first position in which the valve is open, permitting the transfer of a substrate through the passage. The actuator plate also has a second position in which the valve is closed, and in which the actuator plate fluidly seals the passage such that fluid cannot flow through the passage across the actuator plate. A protective cover is configured to prevent debris within the passage (e.g., broken wafers, shards, particulate contaminants, etc.) from flowing into the slot when the actuator plate occupies its second position. In one embodiment, the cover is pivotably secured to the first wall of the passage, proximate the slot. In another embodiment, the cover is secured to the actuator plate, proximate an end thereof. In a preferred embodiment, the cover comprises a plate.
Abstract:
A slit valve for a semiconductor processing apparatus, for fluidly sealing a passage connecting two chambers of the apparatus, such as a substrate reaction chamber and a region outside the reaction chamber. The slit valve comprises an actuator plate movable within a slot in one wall of the passage, the actuator plate and the slot oriented generally transverse to the passage. The actuator plate has a first position in which the valve is open, permitting the transfer of a substrate through the passage. The actuator plate also has a second position in which the valve is closed, and in which the actuator plate fluidly seals the passage such that fluid cannot flow through the passage across the actuator plate. A protective cover is configured to prevent debris within the passage (e.g., broken wafers, shards, particulate contaminants, etc.) from flowing into the slot when the actuator plate occupies its second position. In one embodiment, the cover is pivotably secured to the first wall of the passage, proximate the slot. In another embodiment, the cover is secured to the actuator plate, proximate an end thereof. In a preferred embodiment, the cover comprises a plate.
Abstract:
A slit valve for a semiconductor processing apparatus, for fluidly sealing a passage connecting two chambers of the apparatus, such as a substrate reaction chamber and a region outside the reaction chamber. The slit valve comprises an actuator plate movable within a slot in one wall of the passage, the actuator plate and the slot oriented generally transverse to the passage. The actuator plate has a first position in which the valve is open, permitting the transfer of a substrate through the passage. The actuator plate also has a second position in which the valve is closed, and in which the actuator plate fluidly seals the passage such that fluid cannot flow through the passage across the actuator plate. A protective cover is configured to prevent debris within the passage (e.g., broken wafers, shards, particulate contaminants, etc.) from flowing into the slot when the actuator plate occupies its second position. In one embodiment, the cover is pivotably secured to the first wall of the passage, proximate the slot. In another embodiment, the cover is secured to the actuator plate, proximate an end thereof. In a preferred embodiment, the cover comprises a plate.