摘要:
A method may include receiving a group of images taken by a camera over time in an environment, in which the camera may be oriented within the environment to capture images of an object in a substantially same direction as a launch direction of the object, and the group of images including a first image and a second image. The method may further include: identifying a first position of the object in the first image; identifying a second position of the object in the second image; generating a flight vector based on the first position of the object and the second position of the object; and determining one or more flight parameters using the flight vector. Additionally, the method may include: generating a simulated trajectory of the object based on the flight parameters; and providing the simulated trajectory of the object for presentation in a graphical user interface.
摘要:
A method including detecting an object within a field of view of a radar using a radar signal; tracking movement of the object through the field of view of the radar; triggering a camera to capture a plurality of images of the object based on the movement of the object; detecting the object in the plurality of images; combining data of the radar signal with data of the camera to estimate a position of the object; identifying a radar signal track generated by the motion of the object based on the combined data; and estimating a trajectory of the object based on identifying the radar signal track.
摘要:
A method of object surface matching includes identifying an object in-flight in an image; identifying a feature on the object that is in a first spatial position; comparing the feature with set of template images; identifying a first template image in the set of template images that matches the feature on the object that is in the first spatial position; determining first coordinates for the first spatial position based on the first template image; identifying a second image of the object that includes the feature on the object that is in a second spatial position; identifying a second template image in the set of template images that matches the feature on the object that is in the second spatial position; determining second coordinates for the second spatial position based on the second template image; and generating a spin value for the object based on the first and second coordinates.
摘要:
A method including detecting an object within a field of view of a radar using a radar signal; tracking movement of the object through the field of view of the radar; triggering a camera to capture a plurality of images of the object based on the movement of the object; detecting the object in the plurality of images; combining data of the radar signal with data of the camera to estimate a position of the object; identifying a radar signal track generated by the motion of the object based on the combined data; and estimating a trajectory of the object based on identifying the radar signal track.
摘要:
An example method to determine an object spin rate may include receiving a radar signal of a particular object in motion. The method may further include converting the radar signal into an input vector. The method may also include providing the input vector as input to a neural network. The neural network may include access to a set of initial data that has been generated based on multiple initial radar signals of multiple initial objects in motion. The method may further include determining a spin rate of the particular object in motion based on an analysis performed by the neural network of the input vector including time and frequency information of the particular object in motion in view of the set of initial data. The analysis may include comparing one or more elements of the input vector to one or more elements of the set of initial data.
摘要:
A method may include receiving a group of images taken by a camera over time in an environment, in which the camera may be oriented within the environment to capture images of an object in a substantially same direction as a launch direction of the object, and the group of images including a first image and a second image. The method may further include: identifying a first position of the object in the first image; identifying a second position of the object in the second image; generating a flight vector based on the first position of the object and the second position of the object; and determining one or more flight parameters using the flight vector. Additionally, the method may include: generating a simulated trajectory of the object based on the flight parameters; and providing the simulated trajectory of the object for presentation in a graphical user interface.
摘要:
A method includes receiving motion data of a user in an environment with respect to a plurality of instances of a first action by the user, determining a kinematic movement based on receiving the motion data, analyzing the kinematic movement using a neural network, obtaining a plurality of outcome types with respect to the first action of the user, correlating the kinematic movement with the at least one indication of the outcome type with respect to the first action, classifying an outcome of the first action as at least one of the plurality of outcome types, determining which of the kinematic movements of the user result in the at least one of the plurality of outcome types, and providing instructions to the user to alter the determined kinematic movements of the user that result in the at least one of the plurality of outcome types.
摘要:
An example embodiment includes a method of measuring launch parameters of an object in flight. The method includes capturing images of an object in flight. A radius of the object and a center of the object are identified in each of the images. A velocity, an elevation angle, and an azimuth angle are calculated based on the radius of the object, the center of the object, and pre-measured camera alignment values. The method further includes cropping the images to a smallest square that bounds the object and flattening the images from spherical representations to Cartesian representations. The method also includes converting the Cartesian representations to polar coordinates with a range of candidate centers of rotations. Based on a fit of the polar image pair, the spin axis and spin rate are measured.
摘要:
An example embodiment includes an apparatus for monitoring launch parameters of an object. The apparatus includes a transmitter optical subassembly (TOSA), a receiver optical subassembly (ROSA), a processing unit, and a camera. The TOSA includes at least one laser source configured to transmit a laser sheet along an expected flight path of an object. The ROSA is configured to receive light reflected from the object. The processing unit is configured to estimate a velocity of the object based at least partially on the received light. The camera is configured to capture one or more images of the object at a time in which the object passes through a field of view of the camera according to the estimated velocity.
摘要:
A method for calibrating a camera without the decomposition of camera parameters into extrinsic and intrinsic components is provided. Further, there is provided a method for tracking an object in motion comprising capturing one or more image frames of an object in motion, using one or more calibrated cameras that have been calibrated according to a calibration method that generates and uses a respective transformation matrix for mapping three-dimensional (3D) real world model features to corresponding two-dimensional (2D) image features. The tracking method further comprises determining, using a hardware processor, motion characteristics of the object in motion based on the captured one or more image frames from each one or more calibrated cameras, the determining of the motion characteristics based on implicit intrinsic camera parameters and implicit extrinsic camera parameters of the respective transformation matrix from each respective one or more calibrated cameras.