Abstract:
A yarn comprising linear low density polyethylene fiber and nonmelting fiber or fiber having a melting point higher than the linear low density polyethylene fiber, and structures made therefrom.
Abstract:
The fabrics of this invention have a unique combination of liquid barrier properties and high air permeability and comprise at least one carded nonwoven web comprising at least 10% by weight, based on the total weight of cardable fibers, of cardable polyolefin fibers having a fiber fineness of about 0.5 to about 1.2 decitex. Preferably the polyolefin fibers are hydrophobic polyolefin fibers, and the nonwoven material is thermally bonded. Laminates comprising at least one layer of the fabrics of this invention and at least one layer of another nonwoven material have the same unique combination of properties.
Abstract:
A laminate comprising (1) at least one layer of a textile structure comprising linear low density polyethylene fiber and (2) at least one layer of a textile structure comprising nomnelting fiber or fiber having a melting point higher than the linear low density polyethylene fiber, needlepunched and thermally consolidated together.
Abstract:
A fabric comprising a warp yarn and a filling yarn, wherein the filling yarn comprises linear low density polyethylene fiber and the warp yarn comprises nonmelting fiber or fiber having a melting point higher than the linear low density polyethylene fiber.
Abstract:
Protective articles such as diapers, having filmless hydrophobic barrier elements such as cuffs and backing sheets. The barrier cuffs--which can be, for instance, leg cuffs and waistbands--and the backing sheets can be provided from fabrics having a fabric weight of at least 10 gsy; these fabrics are made of cardable, hydrophobic polyolefin fibers having a dpf value of not more than about 2.0.
Abstract:
A gamma-sterilizable barrier fabric comprises (1) at least one layer of a gamma-sterilizable nonwoven material comprising cardable multiconstituent staple fibers, at least 50% by weight of the nonwoven material comprising a gamma-sterilizable polymer, and (2) at least one layer of gamma-sterilizable barrier material selected from film, wet-laid fabrics, and melt-blown webs, at least 50% by weight of the barrier material comprising a gamma-sterilizable polymer.
Abstract:
Nonwoven structures, prepared from meltblown microfibers, and fibers having heterogeneous melt viscosity. The structures can be in the form of composite nonwoven fabrics, made from alternating layers of the indicated meltblown and heterogeneous fibers; the melt flow rate, of the surface of the heterogeneous fibers, can be one third or more of the meltblown fibers' melt flow rate. The composite nonwoven fabrics have excellent barrier properties, and are useful as sterilization wraps, and for other medical, industrial, and hygiene applications.
Abstract:
A nanoclay based solid sorbent is provided having a nanoclay with at least one surface, and at least one amine containing compound wherein the amine containing compound is attached to the surface, as well as a method of making it. A method of capturing carbon dioxide gas is disclosed includes passing a gas from an effluent process stream containing carbon dioxide through the nanoclay based solid sorbent and capturing the carbon dioxide gas on the surface and within the nanoclay based solid sorbent. The nanoclay based solid sorbent having the captured carbon dioxide gas is regenerated by undergoing one or more cycles of desorption of the captured carbon dioxide gas from the nanoclay. The regenerated nanoclay based solid sorbent may then be reused.
Abstract:
A bandgap voltage reference and voltage regulator system includes a bandgap voltage reference circuit and a voltage regulator circuit that share a single, common amplifier. The amplifier acts as a gain stage for the reference circuit and as an error amplifier for a driver stage of the regulator circuit. The regulator circuit has an input reference generated by the reference circuit, and the reference circuit acts as a load to the driver stage, obviating the need for a bias resistance network. By sharing the amplifier and obviating the need for a resistance network, the area and overall quiescent current of the system are reduced. The system can be implemented in CMOS/BiCMOS technology and is suited for low power applications.
Abstract:
A nanoclay based solid sorbent is provided having a nanoclay with at least one surface, and at least one amine containing compound wherein the amine containing compound is attached to the surface, as well as a method of making it. A method of capturing carbon dioxide gas is disclosed includes passing a gas from an effluent process stream containing carbon dioxide through the nanoclay based solid sorbent and capturing the carbon dioxide gas on the surface and within the nanoclay based solid sorbent. The nanoclay based solid sorbent having the captured carbon dioxide gas is regenerated by undergoing one or more cycles of desorption of the captured carbon dioxide gas from the nanoclay. The regenerated nanoclay based solid sorbent may then be reused.