Interest-based conversational recommendation system

    公开(公告)号:US12190864B1

    公开(公告)日:2025-01-07

    申请号:US18734961

    申请日:2024-06-05

    Applicant: Roku, Inc.

    Abstract: Disclosed herein are system, method and/or computer program product embodiments, and/or combinations thereof, for training a conversational recommendation system. An embodiment generates a probabilistic pseudo-user neural network model based on at least one interest probability distribution corresponding to a pseudo-user profile. The embodiment trains, using the pseudo-user neural network model, the conversational recommendation system to learn a recommendation policy, where the conversational recommendation system includes an interest-exploration engine and a prompt-decision engine. The training includes performing an iterative learning process that includes selecting an interest-exploration strategy based on one or more of the following: an interest-exploration policy, an earlier pseudo-user response generated by the pseudo-user neural network model, content data, and pseudo-user interaction history. The embodiment then generates, using the trained conversational recommendation system, a real-time recommendation having high play probability based on the minimal number of iterations of conversation between a user and the trained conversational recommendation system.

    Content acquisition system
    2.
    发明授权

    公开(公告)号:US12126874B2

    公开(公告)日:2024-10-22

    申请号:US18091234

    申请日:2022-12-29

    Applicant: ROKU, INC.

    Abstract: Disclosed herein are system, apparatus, article of manufacture, method and/or computer program product embodiments, and/or combinations and sub-combinations thereof, for a content acquisition system to recommend for acquisition a subset of content items selected from a set of content items available for purchase in relation to a content recommendation system currently used in a media environment. The content acquisition system may include a content recommendation system simulator to estimate an impact function value for a potential subset of content items of the set of content items available for purchase based on the currently used content recommendation system. Afterwards, an acquisition recommender can recommend for acquisition a subset of content items based on an optimized objective function value calculated based on an optimization model while meeting one or more budget constraints.

    CONTENT ACQUISITION SYSTEM
    3.
    发明申请

    公开(公告)号:US20250016425A1

    公开(公告)日:2025-01-09

    申请号:US18829979

    申请日:2024-09-10

    Applicant: ROKU, INC.

    Abstract: Disclosed herein are system, apparatus, article of manufacture, method and/or computer program product embodiments, and/or combinations and sub-combinations thereof, for a content acquisition system to recommend for acquisition a subset of content items selected from a set of content items available for purchase in relation to a content recommendation system currently used in a media environment. The content acquisition system may include a content recommendation system simulator to estimate an impact function value for a potential subset of content items of the set of content items available for purchase based on the currently used content recommendation system. Afterwards, an acquisition recommender can recommend for acquisition a subset of content items based on an optimized objective function value calculated based on an optimization model while meeting one or more budget constraints.

Patent Agency Ranking