Abstract:
A system is provided that includes multiple analog-to-digital converters (ADCs), multiple antennas, and one or more processors. The one or more processors are configured, in a first mode of operation, to receive from the multiple ADCs samples of emissions received by one of the antennas and identify a signal of interest. The one or more processors are configured, in a second mode of operation, receive from the multiple ADCs samples of emissions received by the multiple antennas and identify an angle of arrival for the signal of interest.
Abstract:
A method for reducing dimensionality of hyperspectral images includes receiving a hyperspectral image having a plurality of pixels. The method may further include establishing an orthonormal basis vector set comprising a plurality of mutually orthogonal normalized members. Each of the mutually orthogonal normalized members may be associated with one of the plurality of pixels of the hyperspectral image. The method may further include decomposing the hyperspectral image into a reduced dimensionality image, utilizing calculations performed while establishing said orthonormal basis vector set. A system configured to perform the method may also be provided.
Abstract:
Interferometric transform spectrometer (ITS) systems and methods of operation thereof. In one example, an ITS system includes a Michelson interferometer that introduces a varying optical path length difference (OPD) between its two arms so as to produce an interferogram, a detector that receives and samples the interferogram, and a scan controller coupled to the detector and to Michelson interferometer. The scan controller controls the Michelson interferometer to vary the OPD in discrete steps such that the detector provides M samples of the interferogram for each of two scan segments. In the first scan segment, the M samples have a uniform or non-uniform sample spacing and the OPD has a first maximum value. In the second scan segment, the M samples have an incrementally increasing sample spacing and the OPD has a second maximum value that is at least twice the first maximum value.
Abstract:
A system is provided that includes multiple analog-to-digital converters (ADCs), multiple antennas, and one or more processors. The one or more processors are configured, in a first mode of operation, to receive from the multiple ADCs samples of emissions received by one of the antennas and identify a signal of interest. The one or more processors are configured, in a second mode of operation, receive from the multiple ADCs samples of emissions received by the multiple antennas and identify an angle of arrival for the signal of interest.
Abstract:
A method includes generating a sampling signal having a non-uniform sampling interval and sampling a received signal with an analog-to-digital converter (ADC) using the sampling signal. The method also includes mapping the sampled received signal onto a frequency grid of sinusoids, where each sinusoid has a signal amplitude and a signal phase. The method further includes estimating the signal amplitude and the signal phase for each sinusoid in the frequency grid. In addition, the method includes computing an average background power level and detecting signals with power higher than the average background power level. The non-uniform sampling interval varies predictably.
Abstract:
Methods and systems are provided for estimating background spectral content in a hyperspectral imaging (HSI) scene. A HSI processor computes a scene covariance matrix for each of a plurality of sparsely sampled pixel sets, identifies and removes the spectral content of contaminating pixels from the covariance matrices, and checks the consistency among the plurality of decontaminated covariance matrices, iteratively re-sampling and re-computing said matrices until an acceptable consistency is achieved, and then computes a final decontaminated covariance matrix representative of the background spectral content of the scene. Alternate approaches to pixel sampling, and/or using fewer spectral dimensions than are available for the pixels are presented.
Abstract:
A method includes generating a sampling signal having a non-uniform sampling interval and sampling a received signal with an analog-to-digital converter (ADC) using the sampling signal. The method also includes mapping the sampled received signal onto a frequency grid of sinusoids, where each sinusoid has a signal amplitude and a signal phase. The method further includes estimating the signal amplitude and the signal phase for each sinusoid in the frequency grid. In addition, the method includes computing an average background power level and detecting signals with power higher than the average background power level. The non-uniform sampling interval varies predictably.
Abstract:
Provided are examples of a detecting engine for identifying detections in compressed scene pixels. For a given compressed scene pixel having a set of M basis vector coefficients, set of N basis vectors, and code linking the M basis vector coefficients to the N basis vectors, the detecting engine reduces a spectral reference (S) to an N-dimensional spectral reference (SN) based on the set of N basis vectors. The detecting engine computes an N-dimensional spectral reference detection filter (SN*) from SN and the inverse of an N-dimensional scene covariance (CN). The detecting engine forms an M-dimensional spectral reference detection filter (SM*) from SN* based on the compression code and computes a detection filter score based on SM*. The detecting engine compares the score to a threshold and determines, based on the comparison, whether the material of interest is present in the given compressed scene pixel and is a detection.
Abstract:
A method for reducing dimensionality of hyperspectral images includes receiving a hyperspectral image having a plurality of pixels. The method may further include establishing an orthonormal basis vector set comprising a plurality of mutually orthogonal normalized members. Each of the mutually orthogonal normalized members may be associated with one of the plurality of pixels of the hyperspectral image. The method may further include decomposing the hyperspectral image into a reduced dimensionality image, utilizing calculations performed while establishing said orthonormal basis vector set. A system configured to perform the method may also be provided.
Abstract:
All of a plurality of analog-to-digital converters (ADCs) each operating in a first mode of operation within a spectrum of interest sample a signal received at one of a plurality of antennas, with the outputs of the ADCs processed to detect signals of interest based on a threshold. For each of the plurality of antennas, a corresponding one of the plurality of ADCs operating in a second mode of operation samples signals received at the one of the antennas such that signals received are sampled at all of the plurality of antennas, with the outputs of the ADCs processed to calculate an angle of arrival for at least one detected signal of interest using phase interferometry. Bandpass or non-uniform under-sampling may be employed to sample all of the antennas at a relatively low data rate.