Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method for rendering images, and performing operations such as windowing and leveling, when the parameters of a client appliance are known and rendering images when the parameters of a client appliance are unknown. The invention also considers the rendering from the client appliance perspective and the server appliance perspective.
Abstract:
A system and method provide image data compression and reconstruction technique optimizations that may enhance (1) local gradient quantization, (2) quantized gradient merging, and/or (3) prediction and/or prediction error computations. A data structure may be created before image data compression that provides access to pre-computed quantization values during image data compression. Quantization merging may be performed by a one-to-one mapping of quantization vectors into corresponding quantization values. Subsequently, the sign of the quantization values may be checked to further reduce the number of logical steps required. A prediction technique may alleviate the effect that noise of neighboring pixels has on the current pixel. The optimizations may be applied to a JPEG-LS based algorithm to speed up processing by approximately 50%, while maintaining error controllability and compression ratio. The optimizations may enhance remote rendering and viewing of medical images in a client server environment.
Abstract:
A method and apparatus for analyzing white blood cells (WBCs) within a whole blood sample quiescently residing within a chamber is provided. The chamber is defined by at least one transparent panel, and the whole blood sample includes at least one colorant operable to differentially identify at least one WBC type from another WBC type within the sample. The method includes the steps of: a) creating at least one image of the sample quiescently residing within the chamber; b) identifying portions of the sample image, with each portion representing a single WBC; c) compressing the sample image portions using a first compression algorithm; and d) one of compressing a remainder of the sample image not included in the portions using a second compression algorithm, or discarding the remainder.