Abstract:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
Abstract:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
Abstract:
In an aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The apparatus switches from a multiple receive diversity (RxD) on state to a RxD off state upon detecting a condition is in a certain state. The condition may be a high measure of correlation between a first antenna and a second antenna, or a high level of imbalance between the first antenna and the second antenna. The apparatus also periodically switches back to the RxD on state to determine if the condition remains in the certain state. The time period between entries into the RxD on state is dynamically adjusted as a function of prior conditions.
Abstract:
Methods and apparatus for managing interference are described and may include updating a covariance inverse value of a linear function to remove an effect on the linear function of a first set of channels associated with a first network entity, wherein the first set of channels are cancelled in response to performing a first cancellation procedure. Methods and apparatus for managing interference may further include performing a second cancellation procedure to cancel a second set of channels associated with a second network entity based at least in part on the updated covariance inverse value of the linear function.
Abstract:
Briefly, in accordance with one embodiment, a method of adjusting for digital automatic gain control (DAGC) quantization error in a mobile station is as follows. A first DAGC value is stored before reception of one or more enhanced pilot signals. A second DAGC value is computed during reception of the one or more enhanced pilot signal. The first DAGC value is restored after reception of the one or more enhanced pilot signals is over. An advantage associated with this particular embodiment may include reduction in quantization error for digital automatic gain control.
Abstract:
Briefly, in accordance with one embodiment, a method of adjusting for digital automatic gain control (DAGC) quantization error in a mobile station is as follows. A first DAGC value is stored before reception of one or more enhanced pilot signals. A second DAGC value is computed during reception of the one or more enhanced pilot signal. The first DAGC value is restored after reception of the one or more enhanced pilot signals is over. An advantage associated with this particular embodiment may include reduction in quantization error for digital automatic gain control.