Abstract:
An apparatus is disclosed for dual-mode amplification by varying a load impedance. In an example aspect, the apparatus includes a low-noise amplifier, a first component, a second component, and a switch. The first component has a first input impedance. The second component is coupled between the low-noise amplifier and the first component. The second component has a second input impedance that is greater than the first input impedance. The switch is coupled in parallel with the second component between the low-noise amplifier and the first component. The switch is configured to selectively be in an open state to engage the second component or a closed state to bypass the second component.
Abstract:
Certain aspects of the present disclosure generally relate to voltage-controlled oscillators (VCOs) using a lowered or an adjustable negative transconductance (−gm) compared to conventional VCOs. This −gm degeneration technique suppresses the noise injected into an inductor-capacitor (LC) tank of the VCO, thereby providing lower signal-to-noise ratio (SNR) for a given VCO voltage swing, lower power consumption, and decreased phase noise. One example VCO generally includes a resonant tank circuit, an active negative transconductance circuit connected with the resonant tank circuit, and a bias current circuit for sourcing or sinking a bias current through the resonant tank circuit and the active negative transconductance circuit to generate an oscillating signal. The active negative transconductance circuit includes cross-coupled transistors and an impedance connected between the cross-coupled transistors and a reference voltage.
Abstract:
Certain aspects of the present disclosure generally relate to voltage-controlled oscillators (VCOs) using a lowered or an adjustable negative transconductance (−gm) compared to conventional VCOs. This −gm degeneration technique suppresses the noise injected into an inductor-capacitor (LC) tank of the VCO, thereby providing lower signal-to-noise ratio (SNR) for a given VCO voltage swing, lower power consumption, and decreased phase noise. One example VCO generally includes a resonant tank circuit, an active negative transconductance circuit connected with the resonant tank circuit, and a bias current circuit for sourcing or sinking a bias current through the resonant tank circuit and the active negative transconductance circuit to generate an oscillating signal. The active negative transconductance circuit includes cross-coupled transistors and an impedance connected between the cross-coupled transistors and a reference voltage.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for temperature-dependent adjustment of a resonant circuit, such as that found in a voltage-controlled oscillator (VCO). Such adjustment may be performed in an effort to compensate for the frequency drift of the resonant circuit due to temperature changes. One example adjustment circuit for temperature-dependent adjustment of a resonant circuit generally includes at least one varactor and two sets of semiconductor devices configured to apply, across the at least one varactor, a differential adjustment voltage based on an ambient temperature of the semiconductor devices to adjust a capacitance of the at least one varactor, wherein each device in the sets of semiconductor devices has a temperature-dependent junction and wherein the two sets of semiconductor devices are configured such that voltage changes of the temperature-dependent junctions in the two sets of semiconductor devices are added in the differential adjustment voltage.
Abstract:
A dynamic latch is disclosed that may reduce power consumption in frequency dividers while widening their frequency operation ranges. The dynamic latch includes a sense component to detect an input voltage in response to a first state of a mode select signal, and to generate an output voltage based, at least in part, on the input voltage; a hold component to retain the output voltage in response to a second state of the mode select signal; and a first transistor, coupled between the sense component and ground potential, including a gate responsive to the mode select signal.