Abstract:
An audio gateway device may establish a wireless connection between the audio gateway device and the hands free device using a protocol supporting a single subscription. The audio gateway device may also establish a first call which terminates or originates at the hands free device via a first subscription. An outgoing call may be established via a second subscription by: (a) receiving a first indicator from the hands free device to switch subscriptions, where the first indicator does not specify a subscription; and (b) establishing an originating second call via the second subscription which originates at the hands free device. Similarly, an incoming call may be established via the second subscription by: (a) sending a second indicator to the hands free device of an incoming third call, where the second indicator does not specify a subscription; and (b) establishing the third call via the second subscription which terminates at the hands free device.
Abstract:
Methods, devices, and systems for controlling imaging operations in electronic image capture devices are disclosed. In some aspects, a device includes processor coupled to a camera module, a user input surface, and a memory. The processor can be configured to receive, from the user input surface, a continuous user input. The continuous user input can include, at least, a first portion and a second portion. The processor can be further configured to control a first imaging operation based on a first input type received during the first portion and control a second imaging operation based on a second input type received during the second portion. The first input type can include movement of an input element relative to the user input surface, for example, and the second imaging operation can be different than the first imaging operation.
Abstract:
Methods, systems, and devices for reducing dropped frames in image capturing devices are described. The method includes receiving, from an optical sensor of the image capturing device, a batch of frames, determining, by a hardware layer or a software layer of the image capturing device, that an error condition exists in relation to the batch of frames, determining, by the hardware layer, a numerical quantity of frames of the batch of frames in a frame buffer based on determining the error condition exists, and sending, by the hardware layer, the determined quantity of frames to the software layer of the image capturing device for processing by the software layer.
Abstract:
Methods, devices, and systems for controlling imaging operations in electronic image capture devices are disclosed. In some aspects, a device includes processor coupled to a camera module, a user input surface, and a memory. The processor can be configured to receive, from the user input surface, a continuous user input. The continuous user input can include, at least, a first portion and a second portion. The processor can be further configured to control a first imaging operation based on a first input type received during the first portion and control a second imaging operation based on a second input type received during the second portion. The first input type can include movement of an input element relative to the user input surface, for example, and the second imaging operation can be different than the first imaging operation.
Abstract:
Multiple regions of a scene are identified, for example through user inputs to a touchscreen while the touchscreen displays preview frames of the scene. Multiple exposure settings are determined based on the identified regions. Each exposure setting is determined based on one of the identified regions, for instance to optimally expose that region. Multiple image frames are captured of the scene, with each image frame captured at a different one of the determined exposure settings. A high dynamic range (HDR) image of the scene is generated by merging the multiple image frames of the scene.
Abstract:
Examples are described of digital zoom retaining image characteristics such as sharpness, clarity, and/or contrast. In some aspects, a device can receive an image and can determine various image characteristic scores corresponding to digitally zoomed variants of the image having different zoom strengths. For instance, the device can determine a first image characteristic score for a first zoom strength and a second image characteristic score for a second zoom strength. The device can compare the image characteristic scores to an image characteristic threshold, and can select the highest zoom strength for which the corresponding image characteristic score is not below the image characteristic threshold. For example, the device can select the first zoom strength if the first image characteristic score meets or exceeds the image characteristic threshold while the second image characteristic score does not. The device can output image data corresponding to the image at the selected zoom strength.
Abstract:
Methods, devices, and systems for controlling imaging operations in electronic image capture devices are disclosed. In some aspects, a device includes processor coupled to a camera module, a user input surface, and a memory. The processor can be configured to receive, from the user input surface, a continuous user input. The continuous user input can include, at least, a first portion and a second portion. The processor can be further configured to control a first imaging operation based on a first input type received during the first portion and control a second imaging operation based on a second input type received during the second portion. The first input type can include movement of an input element relative to the user input surface, for example, and the second imaging operation can be different than the first imaging operation.
Abstract:
Aspects of the present disclosure relate to systems and methods for generating High-Dynamic Range (HDR) images. An example device may include one or more processors and a memory. The memory may include instructions that, when executed by the one or more processors, cause the device to identify a number of regions of interest (ROIs) in a preview image, wherein the number of ROIs is more than one, determine a number of images to be captured for an HDR image to be the number of identified ROIs, and for each ROI associated with a respective image of the number of images to be captured, determine an exposure value to be used in capturing the respective image of the number of images.
Abstract:
Methods, devices, and systems are disclosed. In some aspects, a device includes a processor coupled to a camera module, a display, and a memory. The processor can be configured to cause the display to output a graphical user interface element including a first region. The processor can also receive, from a user input surface, a first input type including movement of an input element relative to the user input surface. The processor can control a first imaging operation based on the first input type and cause the first region to move relative to the user input surface while the first input type is received. The processor can control a second imaging operation based on a second input type, and the second input type can be received after the first input type. The second input type can include a selection of the first region by the input element.
Abstract:
Aspects of the present disclosure relate to systems and methods for generating High-Dynamic Range (HDR) images. An example device may include a camera, one or more processors, and a memory. The memory may include instructions that, when executed by the one or more processors, cause the device to determine, from a preview image captured with an initial exposure value by a camera, a first exposure value for capturing a reference image, and a second exposure value for capturing a first non-reference image, wherein the second exposure value is based on a difference between the initial exposure value and the first exposure value. Execution of the instructions may further cause the device to capture the reference image using the first exposure value, capture the first non-reference image using the second exposure value, and blend the reference image and the first non-reference image in generating an HDR image.