Abstract:
In some cases, conventional digital zoom techniques can lead to poor quality images. Disclosed are systems and methods for improving the quality of images generated by digital zoom. For example, in some embodiments, a parallel structure is utilized where an image is passed through a sharpener and a 2D directional upscaler at the same time. Upscaling operations are then performed on the sharpened image. The upscaled sharpened image is added to the output of the 2D directional upscaler to produce an enhanced image.
Abstract:
Systems, methods, and devices for enhancing an image are described herein. In some aspects, a device comprises a memory unit configured to store a left image and a right image. The left image and right image each depict a same scene from a different viewpoint. The device further comprises a coder configured to retrieve the left image and the right image from the memory unit. The coder is configured to determine a depth map based on a difference in spatial orientation between the left and right image. The device further comprises a processor coupled to the coder. The processor is configured to identify a portion of the left or right image selected by a user. The processor is further configured to determine an enhancement region surrounding the portion selected by the user based on the depth map. The processor is further configured to enhance the enhancement region.
Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, the device includes a noise estimator. The device also includes a motion detector configured to determine a motion value indicative of motion between two frames of the video stream, the motion value based at least in part on the noise value. The device further includes a spatial noise reducer configured to filter the image data based at least in part on a blending factor and the noise value. The device also includes a temporal noise reducer configured to filter the video data based on the motion value and the noise value. The device also includes a blender configured to blend the spatial and temporal filtered values to provide a weighted composite filtered output image.
Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, the device includes a noise estimator. The device also includes a motion detector configured to determine a motion value indicative of motion between two frames of the video stream, the motion value based at least in part on the noise value. The device further includes a spatial noise reducer configured to filter the image data based at least in part on a blending factor and the noise value. The device also includes a temporal noise reducer configured to filter the video data based on the motion value and the noise value. The device also includes a blender configured to blend the spatial and temporal filtered values to provide a weighted composite filtered output image.
Abstract:
Systems, methods, and devices for enhancing an image are described herein. In some aspects, a device comprises a memory unit configured to store a left image and a right image. The left image and right image each depict a same scene from a different viewpoint. The device further comprises a coder configured to retrieve the left image and the right image from the memory unit. The coder is configured to determine a depth map based on a difference in spatial orientation between the left and right image. The device further comprises a processor coupled to the coder. The processor is configured to identify a portion of the left or right image selected by a user. The processor is further configured to determine an enhancement region surrounding the portion selected by the user based on the depth map. The processor is further configured to enhance the enhancement region.
Abstract:
Techniques are described in which a device is configured to determine an overlap region between a first image and a second image, determine a first histogram based on color data included in the first image that corresponds to the overlap region, and determine a second histogram based on color data included in the second image that corresponds to the overlap region. The processor is further configured to determine, based on the first and second histograms, a mapping function that substantially maps the second histogram to the first histogram and apply the mapping function to the second image to generate a normalized second image with respect to the first image.
Abstract:
In some cases, conventional digital zoom techniques can lead to poor quality images. Disclosed are systems and methods for improving the quality of images generated by digital zoom. For example, in some embodiments, a parallel structure is utilized where an image is passed through a sharpener and a 2D directional upscaler at the same time. Upscaling operations are then performed on the sharpened image. The upscaled sharpened image is added to the output of the 2D directional upscaler to produce an enhanced image.