Abstract:
Systems and methods for feedback control of output power in a wireless power transmitter are disclosed. According to one aspect, one of a voltage level at an input of a wireless power transmit coil and a level of current passing through the wireless power transmit coil are sensed. The wireless power transmitter includes a controller configured to adjust an electrical characteristic of the wireless power transmitter to maintain at least one of the level of current and the voltage level at a constant level.
Abstract:
This disclosure provides systems, methods and apparatus for detecting an impedance of a wireless power transmitter load. In one aspect, a method of determining a reactive condition of a wireless power transmitter apparatus is provided. The method comprises determining a value correlated to a voltage of a drain of a switching element of a driver circuit of the wireless power transmitter. The method further comprises determining a reactance load change based on the determined voltage.
Abstract:
This disclosure provides systems, methods and apparatus for detecting wireless charging transmit characteristics. One aspect of the disclosure provides a method of detecting a transmit characteristic in a wireless power transmission device. The device includes a series element electrically coupled to a transmit coil. The method includes determining real and imaginary components of a first voltage at a first terminal of the series element. The method further includes determining real and imaginary components of a second voltage at a second terminal of the series element. The method further includes determining real and imaginary components of a current through the series element, based on the determined first and second voltages. The method further includes determining transmit characteristics such as nodal voltages, currents, power and impedances based on determined voltages and currents. The method further includes adjusting a characteristic of a wireless power transmission based on the determined transmit characteristics.
Abstract:
Systems, methods, and apparatus for amplifying a voltage in wireless power transmitters are disclosed. In one aspect, the transmitter comprises a first circuit configured to generate a first signal. The first signal comprises a non-inverted output. The transmitter further comprises a second circuit configured to generate a second signal in phase with the first signal. The second signal comprises an inverted output with respect to the non-inverted output. The first circuit and the second circuit are further configured to drive a load.
Abstract:
This disclosure provides systems, methods and apparatus for detecting an impedance of a wireless power transmitter load. In one aspect, a method of determining a reactive condition of a wireless power transmitter apparatus is provided. The method comprises determining a value correlated to a voltage of a drain of a switching element of a driver circuit of the wireless power transmitter. The method further comprises determining a reactance load change based on the determined voltage.
Abstract:
An apparatus and method for lost power detection are described. In one implementation, an apparatus for wirelessly transferring power comprises a wireless power transmitter configured to wirelessly transmit power at a first power level sufficient to power or charge a chargeable device. The apparatus further comprises a controller configured to obtain a first power measurement of the first power level. The controller is further configured to determine a first adjusted power measurement of the first power measurement based on one or more tolerance values of the wireless power transmitter. The controller is further configured to determine a second adjusted power measurement of a second power measurement of a second power level received by the chargeable device based on one or more tolerance values of the chargeable device. The controller is further configured to determine if a power difference between the first and second adjusted power measurements exceeds a threshold value.
Abstract:
Systems, methods and apparatus are disclosed for detecting power losses due to induction heating in wireless power receivers. In one aspect, an apparatus for wireless power transfer comprises a power transfer component configured to transmit wireless power to a wireless power receiver at a power level sufficient to charge or power a load. The apparatus further comprises a communications receiver configured to receive a message from the wireless power receiver, the message comprising a group identifier. The apparatus further comprises a controller circuit operationally coupled to the power transfer component and the communications receiver and configured to determine a power loss value based on the group identifier, the power loss value indicative of power loss due to induction heating presented by one or more wireless power receivers that are members of a group associated with the group identifier.
Abstract:
A wireless power transmitter may generate a magnetic field via a transmit antenna to induce voltage in a receive antenna of a wireless power receiver to power the unit and/or charge the receiver's battery. An apparatus for measuring wireless power transfer at an operating frequency between the transmitter and the receiver is provided. The apparatus comprises a first clock configured to generate a first clock signal at a first clock frequency that is higher than the operating frequency of the wireless power transfer. The apparatus further comprises a controller configured to operate based on a second clock signal, the first clock frequency higher than a second clock frequency of the second clock signal. The controller is further configured to measure an amount of wireless power transfer based on the first clock signal.
Abstract:
A uniform magnetic field may provide better performance in wireless power transmitters due to smaller impedance variations in an output of a power amplifier of a wireless power transmitter and also allow for wireless power transmitter pads to be thinner. One aspect of the disclosure provides a device for wireless power transfer. The device comprises a substantially planar transmit antenna that is configured to generate a magnetic field. The device also comprises a pad having a charging surface. At least a portion of the transmit antenna is disposed in the pad. The device also comprises a ferromagnetic material having a shape and a position relative to the transmit antenna. At least one of the shape or position of the ferromagnetic material, or a combination thereof, is selected to modify a distribution of the magnetic field at the charging surface.
Abstract:
Embodiments of the invention relate to a method and system for transferring power wirelessly to electronic devices. The system can utilize magnetic coupling between two coils at close proximity to transfer sufficient power to charge an electronic device. Embodiments of the invention pertain to an array of spiral coils that can be used to transmit power for transfer to receiver coils. Potential applications of this technology include charging consumer electronic devices (cell phones, laptops, PDAs, etc), developing hermetically sealed devices for extreme environments, and less invasive transcutaneous energy transfer (TET) systems. Various embodiments of the subject system can be referred to as PowerPad system. Embodiments can incorporate one or more of the following: planar inductors, PCB transformers, and very high frequency power supplies. Embodiments of the invention also pertain to planar inductors having characteristics that allow the production of even magnetic field, as well as systems that incorporate such planar inductors.