Abstract:
Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first transmit (TX) filter for a first band, which may be part of a first triplexer or duplexer. The first TX filter filters a first radio frequency (RF) signal prior to transmission via the first antenna. The second antenna interface circuit includes a second TX filter for a second band, which may be part of a second triplexer or duplexer. The second TX filter filters a second RF signal prior to transmission via the second antenna. The first and second RF signals may be transmitted simultaneously on the first and second bands for carrier aggregation.
Abstract:
Shared filters used for both transmit and receive paths are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, or a circuit module) may include a filter and a switch. The filter operates as a transmit (TX) filter for a first band and as a receive (RX) filter for a second band. The filter may (i) receive and filter an output radio frequency (RF) signal when operating as the TX filter and (ii) receive and filter a received RF signal when operating as the RX filter. The switch is coupled to the filter and receives and passes the output RF signal to the filter or an input RF signal from the filter. The apparatus may further include a second filter operable as a TX filter for multiple bands and/or a third filter operable as an RX filter for multiple bands.