Abstract:
A delta configuration is signaled for handover of a wireless communication device (e.g., a user equipment, UE) from a first form of connectivity to a second form of connectivity. For example, a UE with master cell group (MCG) connectivity may be handed-over to multiple radio access technology-dual connectivity (MR-DC). In some examples, a UE with standalone (SA) connectivity may be handed-over to non-standalone (NSA) connectivity (e.g., dual connectivity). In conjunction with this handover the UE may be signaled as to whether the UE is to reuse a configuration from the first connectivity mode during the second connectivity mode.
Abstract:
A delta configuration is signaled for handover of a wireless communication device (e.g., a user equipment, UE) from a first form of connectivity to a second form of connectivity. For example, a UE with master cell group (MCG) connectivity may be handed-over to multiple radio access technology-dual connectivity (MR-DC). In some examples, a UE with standalone (SA) connectivity may be handed-over to non-standalone (NSA) connectivity (e.g., dual connectivity). In conjunction with this handover the UE may be signaled as to whether the UE is to reuse a configuration from the first connectivity mode during the second connectivity mode.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. In one aspect, the UE may establish a context for a first RAT, perform an activity involving at least one transmission via a second RAT without initiating a procedure to suspend the context for the first RAT when a duration of the activity is less than a threshold, and communicate via the first RAT using the context after the activity is performed. In another aspect, the UE may receive one or more signals via at least a first RAT, transmit via a second RAT, and perform at least one cell reselection procedure using the one or more signals during the transmission via the second RAT.