Abstract:
Methods and apparatuses are described for providing a shared eNodeB that is configured to provide shared network access to UEs associated with disparate cellular service providers, or operators, over one or more unlicensed frequency bands in a multi-operator, heterogeneous, and dual-connectivity-compatible system. In an example methodology, a shared eNodeB may establish a secondary communication link with a first user equipment associated with a first operators primary cell, then may establish another secondary communication link with a second UE associated with a second operators primary cell, wherein the shared eNodeB is configured to communicate with both a first core network associated with the first operator and a second core network associated with the second operator, and may communicate wirelessly over one or more unlicensed frequency bands with both the first UE via the first communication link and the second UE via the second communication link.
Abstract:
Disclosed are system and method for managing self-organizing wireless networks by a cloud server. In an aspect, the cloud server is configured to collect from a plurality of radio nodes of the wireless networks statistical and predictive information about accessibility and performance of said nodes; collect from a plurality of mobile devices connected to the wireless networks at least statistical and predictive information about performance, location, mobility and services of said devices; analyze the collected information to assess the performance, loading and distribution of network resource among the radio nodes; determine, based on the analysis, optimization guidelines for performance, loading and distribution of network resources among the radio nodes; and send the optimization guidelines to the radio nodes in order to optimize performance, loading and distribution of network resources at the radio nodes and to make resource optimization decisions specific to the individual mobile devices.