Abstract:
Various embodiments include methods implemented on a mobile communication device for sharing network information among subscriptions when both a first subscription and a second subscription are in an idle mode. The methods may include determining whether the first subscription and the second subscription share a network operator and are camped on a same base station. If so, the first subscription may receive network information from the base station and store the network information in a shared memory of the mobile communication device that can be accessed by the second subscription. The second subscription may then perform some idle mode operations using the network information stored in the shared memory.
Abstract:
Systems, methods, and devices providing a framework which reduces the amount of switching required by single transceiver hardware chain mobile devices operating multiple cellular technology and/or service stacks. The various embodiments enable two or more service stacks on the mobile device of various cellular technologies (e.g., 3GPP GSM, UMTS, LTE, WCDMA, etc), to share information, such as network measurements. The various embodiments may also enable one service stack to perform procedures for and provide information to another service stack.
Abstract:
Embodiments include systems and methods for managing access to receive chains of a multi-subscription multi-standby (MSMS) communication device. A device processor may determining a receive mode of the MSMS communication device. In response to determining that the receive mode is a diversity sharing mode, the device processor may monitor a data loss from the broadcast data stream, and may determine a first subscription schedule and a second subscription schedule. The device processor may determine that the data loss is greater than or equal to a threshold, and the device processor may determine that there is an upcoming overlap between the first subscription schedule and the second subscription schedule. The device processor may prevent the second subscription from using the second receive chain.
Abstract:
Various embodiments enable recovering from an out-of-service state in a wireless device. A processor may perform scans of a first acquisition database to acquire a first renewed service connection for a first subscriber identification module (SIM). The scans include first and second searches for first and second channels identified in first and second technology lists, respectively, from the first acquisition database, respectively, until either a renewed service connection is acquired or each of the first and second technology lists are exhausted. The first and second technology lists identify channels from first and second radio access technologies. A currently used channel of a second SIM acquired service is first on the first technology list. The processor may perform a full frequency scan to acquire a first renewed service connection for the first SIM in response to determining that each of the first and second technology lists were exhausted.
Abstract:
Methods and apparatus of controlling user equipment transmit power in a wireless communication system include communicating with a first base station and a second base station. Further, the methods and apparatus include establishing a high speed channel with one of the first base station or the second base station, wherein the one of the first base station or the second base station defines a high speed serving cell and a remaining one of the first base station or the second base station defines a non-high speed cell. Additionally, the methods and apparatus include ignoring a transmit power control command from the non-high speed cell when a high speed power control state applies to controlling a transmit power level.
Abstract:
Various embodiments provide methods implemented in a mobile communication device (e.g., a multi-RAT communication device) for maintaining at least one separate RGS value for each of a plurality of RATs operating on the mobile communication device. Specifically, a device processor on the mobile communication device (e.g., a crystal oscillator manager) may maintain a separate, up-to-date RGS value for each of the plurality of RATs and may associate each of the plurality of RATs with their respective RGS values. By keeping track of the plurality of RATs' respective RGS values, the device processor may ensure that an appropriate RGS value is used to facilitate each RAT's individual operations, such as acquisition/re-acquisition operations, sleep scheduling calculations, and handover/inter-RAT measurement operations. As a result, various embodiments may improve the performance of each RAT and the overall performance of the mobile communication device.
Abstract:
Methods, systems and devices are provided for controlling a communication device. Embodiments include receiving, through the transceiver, a voice call from a first network subscription associated with a first SIM of the communication device. The voice call may interrupt an active data services session through the transceiver with a second network subscription associated with a second SIM of the communication device. Also, embodiments include establishing an active voice communication connection for the voice call on the transceiver with the first network subscription. Additionally, reestablishing the active data services session through the transceiver with the first network subscription while maintaining the active voice communication connection for the voice call with the first network subscription.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may perform uplink communications on a first radio frequency spectrum band using a first transceiver and a first antenna. The first transceiver may have a first capability configuration. The UE may receive an assignment for uplink communications on a second radio frequency spectrum band and couple a second transceiver to the first antenna to perform the uplink communications on the first radio frequency spectrum band. The spectrum transceiver may have a second capability configuration that is different from the first capability configuration with respect to at least the second radio frequency spectrum band. The UE may switch the first transceiver to a second antenna for the uplink communications on the second radio frequency spectrum band.
Abstract:
Embodiments include systems and methods for managing access to receive chains of a multi-subscription multi-standby (MSMS) communication device. A device processor may determine a receive mode of the MSMS communication device. In response to determining that the receive mode is a diversity sharing mode, the device processor may determine a first subscription schedule and a second subscription schedule. The device processor may that there is an upcoming overlap between the first subscription schedule and the second subscription schedule, and in response the device processor may prevent the second subscription from using the second receive chain.
Abstract:
Embodiments described herein relate to systems and methods for scheduling subscriptions in a user equipment (UE) having at least a first receive radio and a second receive radio, including receiving, by the first receive radio, a broadcast activity for a first subscription and receiving, by the second receive radio, a reception activity for a second subscription. A trigger event is detected while the broadcast activity for the first subscription is being received by the first receive radio and the reception activity for the second subscription is being received by the second receive radio. In response to detecting the trigger event, the reception activity for the second subscription is received by the first receive radio and the broadcast activity for the first subscription is received by the second receive radio.