摘要:
A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation. In a further embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation.
摘要:
A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising zinc, cadmium, and sulfur and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material. In a further embodiment, a semiconductor nanocrystal includes a core comprises a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation. In a further embodiment, a semiconductor nanocrystal including a core comprises a first semiconductor material comprising zinc, cadmium, and selenium and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
摘要:
A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising zinc, cadmium, and sulfur and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material. In a further embodiment, a semiconductor nanocrystal includes a core comprises a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation. In a further embodiment, a semiconductor nanocrystal including a core comprises a first semiconductor material comprising zinc, cadmium, and selenium and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.