System based on readout of microwave resonant circuit

    公开(公告)号:US12078693B1

    公开(公告)日:2024-09-03

    申请号:US18562342

    申请日:2023-02-28

    摘要: A terahertz graphene Josephson junction detection system based on readout of a microwave resonant circuit includes a graphene Josephson junction detector, a microwave resonant readout circuit, and a microwave network analyzer. The graphene Josephson junction detector and the microwave resonant readout circuit form a microwave resonant circuit. A terahertz signal causes a change of an equivalent microwave inductance of the graphene Josephson junction detector, such that a resonant frequency and a quality factor of the microwave resonant circuit are changed. The present disclosure monitors the resonant frequency and the quality factor of the microwave resonant circuit with the microwave network analyzer, thereby realizing high-sensitivity detection on the terahertz signal. Compared with conventional direct-current (DC)-biased readout, readout of the microwave resonant circuit is not interfered by an external magnetic field, and has a strong interference resistance.

    Grating- and fiber-coupled multi-beam coherent receiving system in mid- and far-infrared band

    公开(公告)号:US11159246B2

    公开(公告)日:2021-10-26

    申请号:US17263163

    申请日:2020-07-16

    IPC分类号: H04B10/61

    摘要: A grating- and fiber-coupled multi-beam coherent receiving system in a mid- and far-infrared band includes a mid- and far-infrared local oscillator signal source, a phase grating, a multi-beam fiber coupling system, a 2×2 pixel mid- and far-infrared superconducting HEB mixer, a multi-channel DC bias source, a multi-channel cryogenic low-noise amplifier, and a room-temperature intermediate-frequency and high-resolution spectrum processing unit. In a 2×2 multi-beam superconducting receiving system, an echelle grating and a cryogenic optical fiber are used to distribute and couple the local oscillator signal, and the mid- and far-infrared band high-sensitivity superconducting HEB mixer is used to realize efficient local oscillator signal distribution and coupling, and ultimately achieve high-sensitivity and high-resolution multi-beam spectrum reception in the mid- and far-infrared band.