Abstract:
The invention described generally relates to novel therapeutic compounds, and in particular to carbonic anhydrase inhibitors as an antibiotic against Neisseria gonorrhea bacteria and methods for treating those sexually transmitted infection diseases in mammals using the described carbonic anhydrase inhibitors having a formula (I), or a pharmaceutical formulation thereof, alone or together with one or more other antibiotics.
Abstract:
The present invention provides aryl isonitrile compounds that have antibacterial properties. More specifically, the aryl isonitrile compounds of the present invention are potent inhibitors of drug resistant strains of Staphylococcus aureus.
Abstract:
Disclosed herewith is drug repurposing efforts that lead to the discovery of prior non-antibiotic drugs can be used in clinical applicable ranges to treat patients of bacterial infection. These repurposed drug can be used either alone or in combination with traditional antibiotic drugs to treat bacterial strains that may develop or already have developed drug resistance.
Abstract:
Disclosed herewith is drug repurposing efforts that lead to the discovery of prior non-antibiotic drugs can be used in clinical applicable ranges to treat patients of bacterial infection. These repurposed drug can be used either alone or in combination with traditional antibiotic drugs to treat bacterial strains that may develop or already have developed drug resistance.
Abstract:
Invasive fungal infections present a formidable global public health challenge due to the limited number of approved antifungal agents and the emergence of resistance to the frontline treatment options, such as fluconazole. Three fungal pathogens of significant concern are Candida, Cryptococcus, and Aspergillus given their propensity to cause opportunistic infections in immunocompromised individuals. This disclosure provides a set of aryl isonitrile compounds that possess broad-spectrum antifungal activity primarily against species of Candida and Cryptococcus. The most potent derivatives are capable of inhibiting growth of these key pathogens at concentrations as low as 0.5 μM. Remarkably, the most active compounds exhibit an excellent safety profile and are non-toxic to mammalian cells even at concentrations up to 256 μM.
Abstract:
The present invention provides aryl isonitrile compounds that have antibacterial properties. More specifically, the aryl isonitrile compounds of the present invention are potent inhibitors of drug resistant strains of Staphylococcus aureus.
Abstract:
Confronted with the rapid evolution and dissemination of antibiotic resistance, there is an urgent need to develop alternative treatment strategies for drug-resistant S. aureus, especially for methicillin-resistant S. aureus (MRSA). We report a photonic approach to eradicate MRSA through blue-light photolysis of staphyloxanthin (STX), an anti-oxidative carotenoid acting as the constituent lipid of the functional membrane microdomains of S. aureus. Our transient absorption imaging study and mass spectrometry unveil the photolysis process of STX. After effective STX photolysis by pulsed laser, cell membranes are found severely disorganized and malfunctioned to defense antibiotics, as unveiled by membrane permeabilization, membrane fluidification, and detachment of membrane protein, PBP2a. Consequently, our photolysis approach sensitizes MRSA to reactive oxygen species attack and increases susceptibility and inhibits development of resistance to a broad spectrum of antibiotics including penicillins, quinolones, tetracyclines, aminoglyco sides, lipopeptides, and oxazolidinones. The synergistic therapy, without phototoxicity to the host, is effective in combating MRSA both in vitro and in vivo in a mice skin infection model. Collectively, this staphyloxanthin-targeted phototherapy concept paves a novel platform to use conventional antibiotics as well as reactive oxygen species to combat multidrug-resistant S. aureus infections.
Abstract:
The present invention provides aryl isonitrile compounds that have antibacterial properties. More specifically, the aryl isonitrile compounds of the present invention are potent inhibitors of drug resistant strains of Staphylococcus aureus.
Abstract:
The present invention provides aryl isonitrile compounds that have antibacterial properties. More specifically, the aryl isonitrile compounds of the present invention are potent inhibitors of drug resistant strains of Staphylococcus aureus.
Abstract:
Series of 2-phenyl-4-methylthiazole analogs are disclosed as potential therapeutic agents for the treatment of bacterial infections, especially methicillin-resistant Straphylococcus aureus (MRSA) related infections. A method for the treatment of MRSA-related infections is also claimed.