Abstract:
A device for controlling an electrical current includes control circuitry, a micro electromechanical system (MEMS) switch in communication with the control circuitry, the MEMS switch responsive to the control circuitry to facilitate the interruption of an electrical current, a Hybrid Arcless Limiting Technology (HALT) arc suppression circuit disposed in electrical communication with the MEMS switch to receive a transfer of electrical energy from the MEMS switch in response to the MEMS switch changing state from closed to open, the HALT arc suppression circuit including a capacitive portion, and a variable resistance arranged in parallel electrical communication with the capacitive portion of the HALT arc suppression circuit, the variable resistance to dissipate a portion of the transferred electrical energy.
Abstract:
A device for controlling an electrical current includes control circuitry, a micro electromechanical system (MEMS) switch in communication with the control circuitry, the MEMS switch responsive to the control circuitry to facilitate the interruption of an electrical current, a Hybrid Arcless Limiting Technology (HALT) arc suppression circuit disposed in electrical communication with the MEMS switch to receive a transfer of electrical energy from the MEMS switch in response to the MEMS switch changing state from closed to open, the HALT arc suppression circuit including a capacitive portion, and a variable resistance arranged in parallel electrical communication with the capacitive portion of the HALT arc suppression circuit, the variable resistance to dissipate a portion of the transferred electrical energy.
Abstract:
An over current protection system includes a current sensing member configured and disposed to output an electrical rate of change signal that is indicative of a rate of change of an electrical current being in excess of a predetermined value, at least one micro electro-mechanical switch (MEMS) device operatively connected to the current sensing member, and a controller electrically coupled to each of the current sensing member and the at least one MEMS device. The controller is configured and disposed to open the at least one MEMS device in response the electrical rate of change signal.
Abstract:
A circuit breaker closing actuator and a method of operation is provided. The closing actuator is disposed to communicate and receive signals from a trip unit. The trip unit includes a communications to transmit and receive data and signals from a remote location. The trip unit transmits a signal to the closing actuator in response to receiving a closing signal from the remote location. The closing actuator validates the signal and activates a driving circuit if the signal is validated. The driving circuit enables power to a solenoid that closes the circuit breaker.
Abstract:
A motor starter system includes a plurality of switches, and a controller operatively connected to each of the plurality switches. The controller is configured and disposed to selectively activate select ones of the plurality of switches upon detecting a particular phase angle of each of a plurality of phases of a multi-phase electrical source.
Abstract:
A protection apparatus for a circuit breaker disposed in a circuit to be protected uses a solenoid configured to operate the circuit breaker on command, an undervoltage release (UVR) sensing apparatus configured to produce an UVR signal in response to a line voltage of the circuit to be protected falling below a predetermined level, and a shunt trip (ST) sensing apparatus configured to produce a ST signal when it senses a ST command. A controller operably connected to the UVR sensing apparatus, the ST sensing apparatus, and the solenoid, is configured to receive the UVR and ST signals when produced and controls the solenoid to open the breaker in response to receipt by the controller of either of the UVR and ST signals.
Abstract:
A switching system includes a plurality of diodes forming a diode bridge, and a micro-mechanical system (MEMS) switch array closely coupled to the plurality of diodes. The MEMS switch array is electrically connected in an (M×N) array. The (M×N) array includes a first MEMS switch leg electrically connected in parallel with a second MEMS switch leg. The first MEMS switch leg includes a first plurality of MEMS dies electrically connected in series, and the second MEMS switch leg includes a second plurality of MEMS dies electrically connected in series.
Abstract:
A switching system includes a plurality of diodes forming a diode bridge, and a micro-mechanical system (MEMS) switch array closely coupled to the plurality of diodes. The MEMS switch array is electrically connected in an (M×N) array. The (M×N) array includes a first MEMS switch leg electrically connected in parallel with a second MEMS switch leg. The first MEMS switch leg includes a first plurality of MEMS dies electrically connected in series, and the second MEMS switch leg includes a second plurality of MEMS dies electrically connected in series.
Abstract:
A circuit breaker closing actuator and a method of operation is provided. The closing actuator is disposed to communicate and receive signals from a trip unit. The trip unit includes a communications to transmit and receive data and signals from a remote location. The trip unit transmits a signal to the closing actuator in response to receiving a closing signal from the remote location. The closing actuator validates the signal and activates a driving circuit if the signal is validated. The driving circuit enables power to a solenoid that closes the circuit breaker.